Skip to main content
Log in

Solid-state fermentation of cassava (Manihot esculenta Crantz): a review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that all relevant data are included in this article.

References

  • Abdella A, Al-Saman M, Abou-Elazm FI, El-Far SW (2023) Rhizopus oryzae Inulinase production and characterization with application in Chicory Root Saccharification. Microbiol Res 14(1):297–315. https://doi.org/10.3390/microbiolres14010024

    Article  CAS  Google Scholar 

  • Abotbina W, Sapuan SM, Ilyas RA, Sultan MTH, Alkbir MFM, Sulaiman S, Bayraktar E (2022a) Recent Developments in Cassava (M. esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. Materials 15(19):6992. https://doi.org/10.3390/ma15196992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abotbina W, Sapuan SM, Ilyas RA, Sultan MTH, Alkbir MFM, Sulaiman S, Bayraktar E (2022b) Recent Developments in Cassava (M. esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. Materials 15(19):6992. https://doi.org/10.3390/ma15196992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adebare BS, Johnson A, Olanrewaju T, Titilope AO, Femi B, Bankole S, Joshua A (2021) Production and optimization of alpha amylase from A. niger using TME 419 cassava peel as substrate. Tijani, M. and Titilope, Adeyinka Oluwaseun and Femi, Babatunde, P. and Bankole, Sanusi, A. and Joseph, Ifijeh, O. and Joshua, Ayoola, A, Production and optimization of alpha amylase from A. niger using TME, 419. Afr J Biol Sci 50–59

  • Adesulu-Dahunsi AT, Dahunsi SO, Olayanju A (2020) Synergistic microbial interactions between lactic acid bacteria and yeasts during production of nigerian indigenous fermented foods and beverages. Food Control 110:106963. https://doi.org/10.1016/j.foodcont.2019.106963

    Article  CAS  Google Scholar 

  • Adewale P, Yancheshmeh MS, Lam E (2022) Starch modification for non-food, industrial applications: market intelligence and critical review. Carbohydr Polym 291:119590

    Article  CAS  PubMed  Google Scholar 

  • Aganbi E, Egbune EO, Orororo OC, Ezedom T, Egbune OU, Tonukari NJ (2023) Effect of Microbial cell-size on solid state fermentation of Cowpea (Vigna unguiculata L. Walp) and Groundnut (Arachis hypogaea L.) by Rhizopus oligosporus. J Appl Sci Environ Manag 27(6):1093–1103

    Google Scholar 

  • Agarwal A, Jaiswal N, Tripathi AD, Paul V (2021) Downstream processing; applications and recent updates. Bioprocessing for Biofuel Production: Strategies to Improve Process Parameters, 29–55

  • Akindahunsi AA, Oboh G, Oshodi AA (1999) Effect of fermenting cassava with Rhizopus oryzae on the chemical composition of its flour and gari products. Riv Ital Sostanze Grasse 76:437–440

    CAS  Google Scholar 

  • Akpoghelie PO, Edo GI, Akhayere E (2022) Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. Biocatal Agric Biotechnol 45:102535. https://doi.org/10.1016/j.bcab.2022.102535

    Article  CAS  Google Scholar 

  • Alitubeera PH, Eyu P, Kwesiga B, Ario AR, Zhu BP (2019) Outbreak of cyanide poisoning caused by consumption of cassava flour—Kasese District, Uganda, September 2017. Morb Mortal Wkly Rep 68(13):308. https://doi.org/10.15585/mmwr.mm6813a3

    Article  Google Scholar 

  • Amelework AB, Bairu MW, Maema O, Venter SL, Laing M (2021) Adoption and promotion of resilient crops for climate risk mitigation and import substitution: a case analysis of cassava for south african agriculture. Front Sustain Food Syst 5:617783. https://doi.org/10.3389/fsufs.2021.617783

    Article  Google Scholar 

  • Ancuța P, Sonia A (2020) Oil press-cakes and meals valorization through circular economy approaches: a review. Appl Sci 10(21):7432. https://doi.org/10.3390/app10217432

    Article  CAS  Google Scholar 

  • Andriani A, Nuryana I, Rahmani N, Hartati S, Lisdiyanti P (2019) The potency of cassava starch (var. Kristalmerah and var. Revita) for bio-succinic acid production using indigenous lactic acid bacteria (Leuconostoc sp). IOP conf ser : Earth Environ Sci 251(1):012039. https://doi.org/10.1088/1755-1315/251/1/012039

    Article  Google Scholar 

  • Angelia C, Sanjaya A, Aida A, Tanudjaja E, Victor H, Cahyani AD, Pinontoan R (2019) Characterization of alpha-amylase from A. niger aggregate F isolated from a fermented cassava gatot grown in potato peel waste medium. Microbiol Biotechnol Lett 47(3):364–371. https://doi.org/10.4014/mbl.1811.11011

    Article  CAS  Google Scholar 

  • Anigboro AA, Egbune EO, Akeghware O, Evie P, Samofordu AA, Tonukari NJ (2022) Biochemical parameters of solid-state fermented cocoyam (Colocasia esculenta) using Rhizopus oligosporus at different inoculum sizes. Niger J Biotechnol 39(1):68–74

    Article  Google Scholar 

  • Anigboro AA, Ajoh AI, Avwioroko OJ, Ehwarieme DA, Tonukari NJ (2023) Solid-state fermentation of Cassava (M. esculenta) peels using R. oligosporus: application of the fermented peels in yeast production and characterization of α-amylase enzyme produced in the process. Chem Afr 1–10. https://doi.org/10.1007/s42250-022-00582-3

  • Anjum N, Sheikh MA, Saini CS, Hameed F, Sharma HK, Bhat A (2022) Cyanogenic glycosides. Handbook of plant and animal toxins in food. CRC Press, pp 191–202

  • Attah AF, Moody JO, Sonibare MA, Salahdeen HH, Akindele OO, Nnamani PO, Raji Y (2020) Aqueous extract of Moringa oleifera leaf used in nigerian ethnomedicine alters conception and some pregnancy outcomes in Wistar rat. S Afr J Bot 129:255–262. https://doi.org/10.1016/j.sajb.2019.07.041

    Article  CAS  Google Scholar 

  • Avwioroko OJ, Tonukari NJ, Asagba SO (2015) Biochemical characterization of crude α-Amylase of aspergillus spp. Associated with the spoilage of Cassava (Manihot esculenta) tubers and processed products in Nigeria. Adv Biochem 3(1):15–23. https://doi.org/10.11648/j.ab.20150301.14

    Article  CAS  Google Scholar 

  • Azmi AS, Yusuf N, Jimat DN, Puad NIM (2016) Co-production of lactic acid and ethanol using Rhizopus sp. from hydrolyzed inedible cassava starch and leaves. IIUM Engr J 17(2):1–10. https://doi.org/10.31436/iiumej.v17i2.610

    Article  Google Scholar 

  • Babatunde OO, Park CS, Adeola O (2021) Nutritional potentials of atypical feed ingredients for broiler chickens and pigs. Animals 11(5):1196. https://doi.org/10.3390/ani11051196

    Article  PubMed  PubMed Central  Google Scholar 

  • Barth M, Hankinson TR, Zhuang H, Breidt F (2009) Microbiological spoilage of fruits and vegetables. Compendium Microbiological Spoilage Foods Beverages, pp 135–183

  • Bawa AS, Anilakumar KR (2013) Genetically modified foods: safety, risks and public concerns—a review. J Food Sci Technol 50(6):1035–1046. https://doi.org/10.1007/s13197-012-0899-1

    Article  CAS  PubMed  Google Scholar 

  • Bayitse R, Hou X, Laryea G, Bjerre AB (2015) Protein enrichment of cassava residue using Trichoderma pseudokoningii (ATCC 26801). AMB Express 5(1):1–6. https://doi.org/10.1186/s13568-015-0166-8

    Article  CAS  Google Scholar 

  • Begum R, Rakshit SK, Rahman SM (2011) Protein fortification and use of cassava flour for bread formulation. Int J Food Prop 14(1):185–198. https://doi.org/10.1080/10942910903160406

    Article  CAS  Google Scholar 

  • Behera BC (2020) Citric acid from Aspergillus niger: a comprehensive overview. Crit Rev Microbiol 46(6):727–749

    Article  CAS  PubMed  Google Scholar 

  • Behera SS, Ray RC (2017) Microbial linamarase in cassava fermentation. Microbial enzyme technology in food applications. CRC Press, pp 333–346

  • Bennett JW, Klich M (2003) Clinical microbiology reviews. Mycotoxins 16:497

    CAS  Google Scholar 

  • Boakye Peprah B, Parkes EY, Harrison OA, van Biljon A, Steiner-Asiedu M, Labuschagne MT (2020) Proximate composition, cyanide content, and carotenoid retention after boiling of provitamin A-rich cassava grown in Ghana. Foods 9(12):1800. https://doi.org/10.3390/foods9121800

    Article  CAS  Google Scholar 

  • Cao ZH, Green-Johnson JM, Buckley ND, Lin QY (2019) Bioactivity of soy-based fermented foods: a review. Biotechnol Adv 37(1):223–238. https://doi.org/10.1016/j.biotechadv.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  • Catalán E, Sánchez A (2020) Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: a life cycle assessment (LCA) based comparison. Energ 13(11):2685. https://doi.org/10.3390/en13112685

    Article  CAS  Google Scholar 

  • Catalán E, Komilis D, Sánchez A (2019) Environmental impact of cellulase production from coffee husks by solid-state fermentation: a life-cycle assessment. J Clean Prod 233:954–962

    Article  Google Scholar 

  • Chaiareekitwat S, Latif S, Mahayothee B, Khuwijitjaru P, Nagle M, Amawan S, Müller J (2022) Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (M. esculenta Crantz) as influenced by cultivar, plant age, and leaf position. Food Chem 372:131173. https://doi.org/10.1016/j.foodchem.2021.131173

    Article  CAS  PubMed  Google Scholar 

  • Chelule PK, Mokoena MP, Gqaleni N (2010) Advantages of traditional lactic acid bacteria fermentation of food in Africa. Curr Res Technol Edu Topic Appl Microbiol Microb Biotechnol 2:1160–1167

    Google Scholar 

  • Chilakamarry CR, Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, Pandey A (2022) Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour Technol 343:126065. https://doi.org/10.1016/j.biortech.2021.126065

    Article  CAS  PubMed  Google Scholar 

  • Chisenga SM, Workneh TS, Bultosa G, Alimi BA (2019) Progress in research and applications of cassava flour and starch: a review. J Food Sci Technol 56:2799–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho EJ, Trinh LTP, Song Y, Lee YG, Bae HJ (2020) Bioconversion of biomass waste into high value chemicals. Bioresour Technol 298:122386

    Article  CAS  PubMed  Google Scholar 

  • Coban HB (2020) Organic acids as antimicrobial food agents: applications and microbial productions. Bioproces Biosyst Eng 43(4):569–591. https://doi.org/10.1007/s00449-019-02256-w

    Article  CAS  Google Scholar 

  • Coelho MC, Malcata FX, Silva CC (2022) Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. Foods 11(15):2276. https://doi.org/10.3390/foods11152276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha GF, Soares JC, Sousa TLD, Egea MB, Alencar SMD, Belisario CM, Plácido GR (2021) Cassava-starch-based films supplemented with propolis extract: physical, chemical, and microstructure characterization. Biointer Res Appl Chem 11(4):12149–12158. https://doi.org/10.33263/BRIAC114.1214912158

    Article  CAS  Google Scholar 

  • Dahiya S, Bajaj BK, Kumar A, Tiwari SK, Singh B (2020) A review on biotechnological potential of multifarious enzymes in bread making. Proces Biochem 99:290–306. https://doi.org/10.1016/j.procbio.2020.09.002

    Article  CAS  Google Scholar 

  • Demirbolat I, Kartal M (2019) Prulaurasin content of leaves, kernels and pulps of Prunuslauracerasus L. (Cherry Laurel) during ripening. J Res Pharm 23(1). https://doi.org/10.12991/jrp.2018.110

  • Devi A, Diarra SS (2021) Factors affecting the utilisation of cassava products for poultry feeding. Egypt J Vet Sci 52(3):387–403. https://doi.org/10.21608/ejvs.2021.50090.1204

    Article  Google Scholar 

  • Egbune EO, Tonukari NJ (2023) Fermented mixture of cassava roots and palm kernel cake can substitute for maize in poultry feed formulation. Afr J Biochem Res 17(1):1–8

    Google Scholar 

  • Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ (2022a) Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (M. esculenta Crantz) tubers using R. oligosporus: kinetics, thermal inactivation thermodynamics and potential application in laundry industries. Biocatal Agr Biotechnol 39:102290. https://doi.org/10.1016/j.bcab.2022.102290

    Article  CAS  Google Scholar 

  • Egbune EO, Ezedom T, Anigboro AA, Aganbi E, Amata AI, Tonukari NJ (2022b) Antioxidants and antigenotoxic properties of Rhizopus oligosporus fermented cassava (Manihot esculenta Crantz). Afr J Biochem Res 16(3):39–46

    Article  Google Scholar 

  • Egbune EO, Aganbi E, Anigboro AA, Ezedom T, Onojakpor O, Amata AI, Tonukari NJ (2023a) Biochemical characterization of solid-state fermented cassava roots (M. esculenta Crantz) and its application in broiler feed formulation. World J Microbio Biotechnol 39(2):1–12. https://doi.org/10.1007/s11274-022-03496-x

    Article  CAS  Google Scholar 

  • Egbune OU, Egbune EO, Orororo OC, Ezedom T, Onojakpor O, Sabo AM, Amadi K (2023b) Chronic cassava meal modulates body weight, histology and weight of reproductive organs in male albino rats. Toxicol Environ Health Sci 1–10. https://doi.org/10.1007/s13530-023-00179-4

  • Eghagha EP, Egbune EO, Ezedom T, Orororo OC , Anigboro AA, Tonukari NJ (2023) Biochemical Assessment of Solid-State Fermented Elephant Grass and its Potential Incorporation in Broiler's Diets. Nig J Biotech 40(1): 29–42. https://doi.org/10.4314/njb.v40i1.4

  • Egoamaka OE, Eze E, Edwards RA, Ezedom T, Tonukari NJ (2021) Enhancement of the nutritional value of elephant grass (Pennisetum purpureum Schum.) for use as animal feeds and for xylanase production. Nig J Sci Envir 19(2).

  • El Sheikha AF, Ray RC (2022) Bioprocessing of horticultural wastes by solid-state fermentation into value-added/innovative bioproducts: a review. Food Rev Int 1–57. https://doi.org/10.1080/87559129.2021.2004161

  • El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM (2022) A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. J Fungi 8(1):23. https://doi.org/10.3390/jof8010023

    Article  CAS  Google Scholar 

  • Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK (2022) Health promoting foods and food crops of West Africa origin: the bioactive compounds and immunomodulating potential. J Food Biochem e14331

  • Enesi RO, Pypers P, Kreye C, Tariku M, Six J, Hauser S (2022) Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Res 286:108639. https://doi.org/10.1016/j.fcr.2022.108639

    Article  Google Scholar 

  • Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: conventional and emerging approaches. J Environ Manag 265:110510. https://doi.org/10.1016/j.jenvman.2020.110510

    Article  CAS  Google Scholar 

  • Essers AJA, Bennik MHJ, Nout MJR (1995) Mechanisms of increased linamarin degradation during solid-substrate fermentation of cassava. World J Microbiol Biotechnol 11:266–270

    Article  CAS  PubMed  Google Scholar 

  • Ezedom T, Egbune E, Ehikordi M, Ezeugo N, Eledu F, Esiete J, Tonukari N (2022) Biochemical evaluation of autoclaved and solid state fermented tropical pasture grasses. J Agric Biotech Sustain Dev 14(2):24–32

    Article  Google Scholar 

  • Ezekiel OO, Aworh OC (2013) Solid state fermentation of cassava peel with trichoderma viride (ATCC 36316) for protein enrishment

  • Falade KO, Akingbala JO (2010) Utilization of cassava for food. Food Rev Int 27(1):51–83

    Article  Google Scholar 

  • Farias FDAC, de Souza Moretti MM, Costa MS, BordignonJunior SE, Cavalcante KB, Boscolo M, da Silva R (2020) Structural and physicochemical characteristics of taioba starch in comparison with cassava starch and its potential for ethanol production. Ind Crops Prod 157:112825

    Article  CAS  Google Scholar 

  • Fathima AA, Sanitha M, Tripathi L, Muiruri S (2023) Cassava (M. esculenta) dual use for food and bioenergy: a review. Food Ener Secur 12(1):e380. https://doi.org/10.1002/fes3.380

    Article  Google Scholar 

  • Ferdeș M, Dincă MN, Moiceanu G, Zăbavă B, Paraschiv G (2020) Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: a review. Sustainability 12(17):7205

    Article  Google Scholar 

  • Fernandes MLP, Jorge JA, Guimarães LHS (2018) Characterization of an extracellular β d-fructofuranosidase produced by aspergillus niveus during solid-state fermentation (SSF) of cassava husk. J Food Biochem 42(1):e12443. https://doi.org/10.1111/jfbc.12443

    Article  CAS  Google Scholar 

  • Fidan H, Esatbeyoglu T, Simat V, Trif M, Tabanelli G, Kostka T, Özogul F (2022) Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: facts and gaps. Food Biosci 47:101741. https://doi.org/10.1016/j.fbio.2022.101741

    Article  CAS  Google Scholar 

  • Ganesh KS, Sridhar A, Vishali S (2022) Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities-A review. Chemosphere 287:132221. https://doi.org/10.1016/j.chemosphere.2021.132221

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Aguirre J, Aymerich E, de Goñi JGM, Esteban-Gutiérrez M (2017) Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresour Technol 244:1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187

    Article  CAS  PubMed  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int. https://doi.org/10.1155/2013/329121

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadj Saadoun J, Bertani G, Levante A, Vezzosi F, Ricci A, Bernini V, Lazzi C (2021) Fermentation of agri-food waste: a promising route for the production of aroma compounds. Foods 10(4):707

    Article  PubMed  PubMed Central  Google Scholar 

  • Haldar D, Purkait MK (2020) Lignocellulosic conversion into value-added products: a review. Process Biochem 89:110–133

    Article  CAS  Google Scholar 

  • Hawashi M, Widjaja T, Gunawan S (2019) Solid-state fermentation of cassava products for degradation of anti-nutritional value and enrichment of nutritional value. New Adva Ferment Proces 1:1–19

    Google Scholar 

  • Hendry-Hofer TB, Ng PC, Witeof AE, Mahon SB, Brenner M, Boss GR, Bebarta VS (2019) A review on ingested cyanide: risks, clinical presentation, diagnostics, and treatment challenges. J Med Toxicol 15:128–133. https://doi.org/10.1007/s13181-018-0688-y

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Timothy JT, Purdy SK, Chicilo F, Shen J, Meda V, Reaney MJ (2023) Depletion of cyanogenic glycosides in whole flaxseed via Lactobacillaceae fermentation. Food Chem 403:134441. https://doi.org/10.1016/j.foodchem.2022.134441

    Article  CAS  PubMed  Google Scholar 

  • Intaramas K, Sakdaronnarong C, Liu CG, Mehmood MA, Jonglertjunya W, Laosiripojana N (2019) Sequential catalytic-mixed-milling and thermohydrolysis of cassava starch improved ethanol fermentation. Food Bioprod Proces 114:72–84. https://doi.org/10.1016/j.fbp.2018.11.011

    Article  CAS  Google Scholar 

  • Iyayi EA, Losel DM (2001) Protein enrichment of cassava by-products through solid state fermentation by fungi. J Food Technol Afr 6(4):116–118

    Google Scholar 

  • Jach ME, Malm A (2022) Yarrowialipolytica as an alternative and valuable source of nutritional and bioactive compounds for humans. Molecules 27(7):2300. https://doi.org/10.3390/molecules27072300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson J, Chiwona-Karltun L, Gordon A (2020) Food safety and quality considerations for cassava, a major staple containing a natural toxicant. In Food safety and quality systems in developing countries (pp. 343–366). Academic Press. https://doi.org/10.1016/B978-0-12-814272-1.00008-5

  • Jacob OA, Anuoluwa OE, Raimi MO (2021) Potential toxic levels of Cyanide and Heavy Metals in Cassava Flour sold in selected markets in OkeOgun Community, Oyo State, Nigeria. https://doi.org/10.21203/rs.3.rs-658748/v1

  • Jamal P, Tijani RI, Alam MZ, Mirghani MES (2012) Effect of operational parameters on solid state fermentation of cassava peel to an enriched animal feed. J Appl Sci 12(11):1166–1170. https://doi.org/10.3923/jas.2012.1166.1170

    Article  CAS  Google Scholar 

  • Jullanun P, Yoksan R (2020) Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polym Test 88:106522. https://doi.org/10.1016/j.polymertesting.2020.106522

    Article  CAS  Google Scholar 

  • Kobawila SC, Louembe D, Keleke S, Hounhouigan J, Gamba C (2005) Reduction of the cyanide content during fermentation of cassava roots and leaves to produce bikedi and ntobambodi, two food products from Congo. Afri J Biotechnol 4(7):689–696. https://doi.org/10.5897/AJB2005.000-3128

    Article  CAS  Google Scholar 

  • Kruschitz A, Nidetzky B (2020) Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 43:107568

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR (2021) Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour Technol 323:124566. https://doi.org/10.1016/j.biortech.2020.124566

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma S, Bhat R (2022) Biopolymers: recent updates, Challenges and Opportunities. Springer Nature

  • Kumari P, Mehta A, Sehgal R, Ray RC, Gupta R (2022) Microbial enzymes and Organic acids production from Vegetable and Fruit Wastes and their applications. Fruits and vegetable wastes: valorization Bioprod Platfor Chemicals. Springer, Singapore, pp 237–257. https://doi.org/10.1007/978-981-16-9527-8_10Nature Singapore

    Chapter  Google Scholar 

  • Lateef A, Oloke JK, Gueguim Kana EB, Oyeniyi SO, Onifade OR, Oyeleye AO, Oyelami AO (2008) Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J Microbiol Biotechnol 24:2369–2374. https://doi.org/10.1007/s11274-008-9749-8

    Article  CAS  Google Scholar 

  • Li S, Cui Y, Zhou Y, Luo Z, Liu J, Zhao M (2017) The industrial applications of cassava: current status, opportunities and prospects. J Sci Food Agri 97(8):2282–2290. https://doi.org/10.1002/jsfa.8287

    Article  CAS  Google Scholar 

  • Lin HJ, Xian L, Zhang QJ, Luo XM, Xu QS, Yang Q, Feng JX (2011) Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol. J Industr Microbiol Biotechnol 38(6):733–742. https://doi.org/10.1007/s10295-010-0910-7

    Article  CAS  Google Scholar 

  • Lin Z, Liu H, Wu J, Patakova P, Branska B, Zhang J (2019) Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnol Biofuels 12:1–11

    Article  Google Scholar 

  • Liu X, Kokare C (2023) Microbial enzymes of use in industry. In Biotechnol Micro Enzym (pp. 405–444). Academic Press. https://doi.org/10.1016/B978-0-443-19059-9.00021-9

  • Liu D, Ma X, Huang J, Shu Z, Chu X, Li Y, Jin Y (2022) Enhancing the fermentation of acidified food waste using a self-formulated thermophilic and acid-resistant bacterial agent. J Environ Chem Eng 10(3):107350

    Article  CAS  Google Scholar 

  • Londoño-Hernandez L, Ruiz HA, Toro CR, Ascacio-Valdes A, Rodriguez-Herrera R, Aguilera-Carbo A, Aguilar CN (2020) Advantages and Progress innovations of solid-state fermentation to produce industrial enzymes. Microb Enzymes: Role Appl Industr 87–113. https://doi.org/10.1007/978-981-15-1710-5_4

  • Mahato N, Sharma K, Sinha M, Dhyani A, Pathak B, Jang H, Cho S (2021) Biotransformation of citrus waste-I: production of biofuel and valuable compounds by fermentation. Process 9(2):220

    Article  CAS  Google Scholar 

  • Maliki OO, Alagbonsi AI, Ibitoye CM, Olayaki LA (2021) Melatonin and vitamin C modulate cassava diet-induced alteration in reproductive and thyroid functions. Nig J Experiment Cli Biosci 9(3):133

    Article  Google Scholar 

  • Manga EB, Celik PA, Cabuk A, Banat IM (2021) Biosurfactants: Opportunities for the development of a sustainable future. Curr Opi Colloi Inter Sci 56:101514. https://doi.org/10.1016/j.cocis.2021.101514

    Article  CAS  Google Scholar 

  • McMahon J, Sayre R, Zidenga T (2022) Cyanogenesis in cassava and its molecular manipulation for crop improvement. J Exp Bot 73(7):1853–1867. https://doi.org/10.1093/jxb/erab545

    Article  CAS  PubMed  Google Scholar 

  • Morales EM, Domingos RN, Angelis DF (2018) Improvement of protein bioavailability by solid-state fermentation of babassumesocarp flour and cassava leaves. Wast Biomas Valorizat 9:581–590. https://doi.org/10.1007/s12649-016-9759-y

    Article  CAS  Google Scholar 

  • Morales EM, Zajul M, Goldman M, Zorn H, Angelis DF (2020) Effects of solid-state fermentation and the potential use of cassava by-products as fermented food. Wast Biomas Valorizat 11:1289–1299. https://doi.org/10.1007/s12649-018-0479-3

    Article  CAS  Google Scholar 

  • Moran-Aguilar MG, Costa-Trigo I, Calderón-Santoyo M, Domínguez JM, Aguilar-Uscanga MG (2021) Production of cellulases and xylanases in solid-state fermentation by different strains of A. niger using sugarcane bagasse and brewery spent grain. J Biochem Eng 172:108060. https://doi.org/10.1016/j.bej.2021.108060

    Article  CAS  Google Scholar 

  • More SJ, Bardhan K, Ravi V, Pasala R, Chaturvedi AK, Lal MK, Siddique KH (2023) Morphophysiological responses and tolerance mechanisms in cassava (M. esculenta Crantz) under drought stress. J Soil Sci Plant Nutrit 1–21. https://doi.org/10.1007/s42729-023-01127-4

  • Morgan NK, Choct M (2016) Cassava: nutrient composition and nutritive value in poultry diets. Anim Nutrit 2(4):253–261. https://doi.org/10.1016/j.aninu.2016.08.010

    Article  Google Scholar 

  • Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z (2022) A comprehensive review of flaxseed (Linum usitatissimum L.): health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit Rev Food Sci Nutrit 1–24. https://doi.org/10.1080/10408398.2022.2092718

  • Muiruri KS, Fathima AA (2023) Advances in Cassava Trait Improvement and Processing Technologies for Food and Feed. DOI: https://doi.org/10.5772/intechopen.110104

  • Murata Y, Nwuche CO, Nweze JE, Ndubuisi IA, Ogbonna JC (2021) Potentials of multi-stress tolerant yeasts, Saccharomyces cerevisiae and Pichia kudriavzevii for fuel ethanol production from industrial cassava wastes. Process Biochem 111:305–314

    Article  CAS  Google Scholar 

  • Ndego A, Ezedom T, Egbune EO, Tonukari N (2023) Biochemical characterization of solid state fermented maize cob (Zea mays) using Rhizopus oligosporus and its application in poultry feed production. Int J Recycl Org Waste Agric 12(2):235–246

    Google Scholar 

  • Nursiwi A, Pertiwi F, Ishartani D, Sari AM, Zaman MZ (2021) Substrates and storage time evaluation for preparing tempeh starter from Rhizopus oryzae CBS130145. In IOP Conf. Ser; Earth Environ Sci 828(1), 012003). IOP Publishing. DOI https://doi.org/10.1088/1755

  • Nyirenda KK (2020) Toxicity potential of cyanogenic glycosides in edible plants. Med Toxicol 1–19

  • Oboh G (2006) Nutrient enrichment of cassava peels using a mixed culture of Saccharomyces cerevisae and Lactobacillus spp solid media fermentation techniques. Electron J Biotechnol 9(1):0–0

    Article  Google Scholar 

  • Oboh G, Akindahunsi AA, Oshodi AA (2002) Nutrient and anti-nutrient contents of A. niger-fermented cassava products (flour and gari). J Food Compos Anal 15(5):617–622

    Article  CAS  Google Scholar 

  • Ojimelukwe PC, Nwakanma AC (2022) Solid state fermentation improves the quality of soy-cassava diet. Acta Aliment. https://doi.org/10.1556/066.2022.00024

    Article  Google Scholar 

  • Ojo I, Apiamu A, Egbune EO, Tonukari NJ (2022) Biochemical characterization of solid-state fermented cassava stem (M. esculenta Crantz-MEC) and its application in poultry feed formulation. Appl Biochem Biotechnol 194(6):2620–2631. https://doi.org/10.1007/s12010-022-03871-2

    Article  CAS  PubMed  Google Scholar 

  • Okwuonu IC, Narayanan NN, Egesi CN, Taylor NJ (2021) Opportunities and challenges for biofortification of cassava to address iron and zinc deficiency in Nigeria. Global Food Security 28:100478. https://doi.org/10.1016/j.gfs.2020.100478

    Article  Google Scholar 

  • Olaoye SF, Oladipo AS (2022) Utilizing the glycemic indexes advantages of sweet potato in production of granular product: towards creating alternative diet for diabetic patients. J Res Wildl Environ 14(3):116–125

    Google Scholar 

  • Oresegun A, Fagbenro OA, Ilona P, Bernard E (2016) Nutritional and anti-nutritional composition of cassava leaf protein concentrate from six cassava varieties for use in aqua feed. Cogent Food Agric 2(1):1147323. https://doi.org/10.1080/23311932.2016.1147323

    Article  CAS  Google Scholar 

  • Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A (2022) The importance and mitigation of mycotoxins and plant toxins in southeast asian fermented foods. npj Sci Food 6(1):39. https://doi.org/10.1038/s41538-022-00152-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Padi RK, Chimphango A (2020) Feasibility of commercial waste biorefineries for cassava starch industries: techno-economic assessment. Bioresour Technol 297:122461

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LP, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74(1):81–87. https://doi.org/10.1016/S0960-8524(99)00143-1

    Article  CAS  Google Scholar 

  • Panghal A, Munezero C, Sharma P, Chhikara N (2019) Cassava toxicity, detoxification and its food applications: a review. Toxin Reviews. https://doi.org/10.1080/15569543.2018.1560334

    Article  Google Scholar 

  • Papathoti NK, Laemchiab K, Megavath VS, Keshav PK, Numparditsub P, Le Thanh T, Buensanteai N, Effects (2021) 1–11. https://doi.org/10.1080/15567036.2021.1928338

  • Papathoti NK, Mendam K, Thepbandit W, Burgula N, Sangpueak R, Saengchan C, Buensanteai N (2022) Bioethanol production from alkali-pretreated cassava stem waste via consolidated bioprocessing by ethanol-tolerant Clostridium thermocellum ATCC 31,924. Biomass Convers Biorefin 1–13. https://doi.org/10.1007/s13399-022-02868-5

  • Parmar A, Sturm B, Hensel O (2017) Crops that feed the world: production and improvement of cassava for food, feed, and industrial uses. Food Secur 9:907–927

    Article  Google Scholar 

  • Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J Bioresour Bioprod 6(2):108–128. https://doi.org/10.1016/j.jobab.2021.02.001

    Article  CAS  Google Scholar 

  • Peralta RM, da Silva BP, Côrrea RCG, Kato CG, Seixas FAV, Bracht A (2017) Enzymes from basidiomycetes—peculiar and efficient tools for biotechnology. In Biotechnology of microbial enzymes (pp. 119–149). Academic Press. https://doi.org/10.1016/B978-0-12-803725-6.00005-4

  • Peres S, Monteiro MR, Ferreira ML, do Nascimento Junior AF, de Los Angeles Perez Fernandez Palha M (2019) Anaerobic digestion process for the production of biogas from cassava and sewage treatment plant sludge in Brazil. BioEnergy Res 12:150–157. https://doi.org/10.1007/s12155-018-9942-z

    Article  CAS  Google Scholar 

  • Peyer LC, Zannini E, Arendt EK (2016) Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 54:17–25. https://doi.org/10.1016/j.tifs.2016.05.009

    Article  CAS  Google Scholar 

  • Phrueksawan P, Kulpreecha S, Sooksai S, Thongchul N (2012) Direct fermentation of L (+)-lactic acid from cassava pulp by solid state culture of Rhizopus oryzae. Bioprocess Biosyst Eng 35:1429–1436. https://doi.org/10.1007/s00449-012-0731-3

    Article  CAS  PubMed  Google Scholar 

  • Poddar BJ, Nakhate SP, Gupta RK, Chavan AR, Singh AK, Khardenavis AA, Purohit HJ (2022) A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int J Environ Sci Technol 1–28

  • Pooja NS, Sajeev MS, Jeeva ML, Padmaja G (2018) Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech 8:1–12

    Article  Google Scholar 

  • Poonsrisawat A, Wanlapatit S, Paemanee A, Eurwilaichitr L, Piyachomkwan K, Champreda V (2014) Viscosity reduction of cassava for very high gravity ethanol fermentation using cell wall degrading enzymes from Aspergillus aculeatus. Process Biochem 49(11):1950–1957

    Article  CAS  Google Scholar 

  • Pothiraj C, Arun A, Eyini M (2015) Simultaneous saccharification and fermentation of cassava waste for ethanol production. Biofuel Res J 2(1):196–202

    Article  CAS  Google Scholar 

  • Prasertsilp P, Pattaragulwanit K, Kim BS, Napathorn SC (2023) Microwave-assisted cassava pulp hydrolysis as food waste biorefinery for biodegradable polyhydroxybutyrate production. Front bioeng biotechnol 11:1131053

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratap V, Bombaywala S, Mandpe A, Khan SU (2021) Solid Waste Treatment: Technological Advancements and Challenges. In Soft Computing Techniques in Solid Waste and Wastewater Management (pp. 215–231). Elsevier. https://doi.org/10.1016/B978-0-12-824463-0.00014-8

  • Purwadaria T (2014) Solid substrate fermentation of cassava peel for poultry feed ingredient. WARTAZOA Indonesian Bull Anim Vet Sci 23(1):15–22. https://doi.org/10.14334/wartazoa.v23i1.955

    Article  Google Scholar 

  • Ram S, Narwal S, Gupta OP, Pandey V, Singh GP (2020) Anti-nutritional factors and bioavailability: approaches, challenges, and opportunities. Wheat and barley grain biofortification. 101–128. https://doi.org/10.1016/B978-0-12-818444-8.00004-3

  • Ramos CL, Schwan RF (2019) Ethnic Fermented Foods of America. Fermented Food Products. CRC Press, pp 41–54

  • Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Pandey A (2018) Applications of microbial enzymes in food industry. Food Sci Biotechnol 56(1):16. https://doi.org/10.17113/ftb.56.01.18.5491

    Article  CAS  Google Scholar 

  • Rawoof SAA, Kumar PS, Vo DVN, Devaraj K, Mani Y, Devaraj T, Subramanian S (2021) Production of optically pure lactic acid by microbial fermentation: a review. Environ Chem Lett 19:539–556. https://doi.org/10.1007/s10311-020-01083-w

    Article  CAS  Google Scholar 

  • Rodricks JV, Turnbull D, Chowdhury F, Wu F (2020) Food constituents and contaminants. Environmental toxicants: human exposures and their health effects, 149–204. https://doi.org/10.1002/9781119438922.ch6

  • Rogoski W, Pereira GN, Cesca K, de Oliveira D, de Andrade CJ (2023) An overview on pretreatments for the production of cassava peels-based Xyloligosaccharides: State of Art and Challenges. Waste Bio Val 1–17. https://doi.org/10.1007/s12649-023-02044-4

  • Ruqayyah TID, Jamal P, Alam MZ, Mirghani MES, Jaswir I, Ramli N (2014) Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY. Food Hydrocolloids 42:298–303. https://doi.org/10.1016/j.foodhyd.2014.04.027

    Article  CAS  Google Scholar 

  • Salgaonkar BB, Mani K, Bragança JM (2019) Sustainable bioconversion of Cassava Waste to Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3. J Polym Environ 27:299–308. https://doi.org/10.1007/s10924-018-1346-9

    Article  CAS  Google Scholar 

  • Sánchez M, Laca A, Laca A, Díaz M (2021) Value-added products from Fruit and Vegetable Wastes: a review. CLEAN–Soil Air Water 49(8):2000376. https://doi.org/10.1002/clen.202000376

    Article  CAS  Google Scholar 

  • Shanmugam MK, Mandari V, Devarai SK, Gummadi SN (2022) Types of bioreactors and important design considerations. In Current Developments in Biotechnol Bioengi (pp. 3–30). Elsevier. https://doi.org/10.1016/B978-0-323-91167-2.00008-3

  • Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S (2020) Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6(4):106. https://doi.org/10.3390/fermentation6040106

    Article  CAS  Google Scholar 

  • Sharma V, Tsai ML, Nargotra P, Chen CW, Kuo CH, Sun PP, Dong CD (2022) Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: a critical review. Catal 12(11):1373

    Article  CAS  Google Scholar 

  • Shi X, Wu D, Xu Y, Yu X (2022) Engineering the optimum pH of β-galactosidase from Aspergillus oryzae for efficient hydrolysis of lactose. J Dairy Sci 105(6):4772–4782. https://doi.org/10.3168/jds.2021-21760

    Article  CAS  PubMed  Google Scholar 

  • Shittu TA, Alimi BA, Wahab B, Sanni LO, Abass AB (2016) Cassava flour and starch: Processing technology and utilization. Tropical roots and tubers: Production, processing and technology, 415–450

  • Shruthi BR, Achur RNH, NayakaBoramuthi T (2020) Optimized solid-state fermentation medium enhances the multienzymes production from Penicillium citrinum and Aspergillus clavatus. Curr Microbiol 77(9):2192–2206. https://doi.org/10.1007/s00284-020-02036-w

    Article  CAS  PubMed  Google Scholar 

  • Singh TA, Sharma M, Sharma M, Sharma GD, Passari AK, Bhasin S (2022) Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel 322:124284. https://doi.org/10.1016/j.fuel.2022.124284

    Article  CAS  Google Scholar 

  • Smole MS, Hribernik S, Kurečič M, Krajnc AU, Kreže T, Kleinschek KS (2019) Surface properties of non-conventional cellulose fibres. Springer International Publishing, Cham, Switzerland

    Book  Google Scholar 

  • Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N (2022) Insights on sustainable approaches for production and applications of value added products. Chemosphere 286:131623. https://doi.org/10.1016/j.chemosphere.2021.131623

    Article  CAS  PubMed  Google Scholar 

  • Song W, Tong Y, Li Y, Tao J, Li J, Zhou J, Liu S (2021) Expression and characterization of a raw-starch glucoamylase from Aspergillus fumigatus. Process Biochem 111:97–104. https://doi.org/10.1016/j.procbio.2021.10.024

    Article  CAS  Google Scholar 

  • Srianta I, Kusdiyantini E, Zubaidah E, Ristiarini S, Nugerahani I, Alvin A, Zhang BB (2021) Utilization of agro-industrial by-products in Monascus fermentation: a review. Bioresour Bioprocess 8(1):1–12. https://doi.org/10.1186/s40643-021-00473-4

    Article  Google Scholar 

  • Srivastava N, Srivastava M, Ramteke PW, Mishra PK (2019) Solid-state fermentation strategy for microbial metabolites production: An overview. New and future developments in Microb Biotechnol Bioeng 345–354. https://doi.org/10.1016/B978-0-444-63504-4.00023-2

  • Sukara E, Hartati S, Ragamustari SK (2020) State of the art of indonesian agriculture and the introduction of innovation for added value of cassava. Plant Biotechnol Rep 14(2):207–212. https://doi.org/10.1007/s11816-020-00605-w

    Article  Google Scholar 

  • Taleon V, Sumbu D, Muzhingi T, Bidiaka S (2019) Carotenoids retention in biofortified yellow cassava processed with traditional african methods. J Sci Food Agric 99(3):1434–1441. https://doi.org/10.1002/jsfa.9347

    Article  CAS  PubMed  Google Scholar 

  • Temiz A, Ayhan DK (2017) Enzymes in minimally processed fruits and vegetables. Minimally processed refrigerated fruits and vegetables, 93–151. https://doi.org/10.1007/978-1-4939-7018-6_4

  • Thaweewong P, Anuntagool J (2023) Change in free cyanide content of bitter cassava during incubation and drying and physical properties of dry-milled cassava flour. Food Bioprod Process 138:139–149. https://doi.org/10.1016/j.fbp.2023.01.009

    Article  CAS  Google Scholar 

  • Thongkratok R, Khempaka S, Molee W (2010) Protein enrichment of cassava pulp using microorganisms fermentation techniques for use as an alternative animal feedstuff. J Anim Vet Adv 9(22):2859–2862

    Article  CAS  Google Scholar 

  • Tonukari NJ, Tonukari NJ, Ezedom T, Enuma CC, Sakpa SO, Avwioroko OJ, Odiyoma E (2015) White gold: cassava as an industrial base. Am J Plant Sci 6(07):972. https://doi.org/10.4236/ajps.2015.67103

    Article  CAS  Google Scholar 

  • Tonukari NJ, Oliseneku EE, Avwioroko OJ, Aganbi E, Orororo OC, Anigboro AA (2016) A novel pig feed formulation containing A. niger CSA35 pretreated-cassava peels and its effect on growth and selected biochemical parameters of pigs. Afr J Biotechnol 15(19):776–785

    Article  CAS  Google Scholar 

  • Tonukari NJ, Anigboro AA, Avwioroko OJ, Egbune EO, Ezedom T, Ajoh AI, Aganbi E (2023) Biochemical properties and biotechnological applications of cassava peels. Biotechn Mol Bio Rev 14(1):1–8

    Google Scholar 

  • Tran QB, Phenrat T, Lohitnavy M (2020) Physiologically based pharmacokinetic modeling of hydrogen cyanide in humans following the oral administration of potassium cyanide and cyanogenic glycosides from food. Hum Ecol Risk Assessment: Internat J 26(6):1496–1511. https://doi.org/10.1080/10807039.2019.1587288

    Article  CAS  Google Scholar 

  • Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Jaremko M (2020) Important flavonoids and their role as a therapeutic agent. Molecules 25(22):5243. https://doi.org/10.3390/molecules25225243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenberghe LP, Pandey A, Carvalho JC, Letti LA, Woiciechowski AL, Karp SG, Soccol CR (2021) Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst Microbiol Biomanufacturing 1:142–165. https://doi.org/10.1007/s43393-020-00015-7

    Article  CAS  Google Scholar 

  • Verduzco-Oliva R, Gutierrez-Uribe JA (2020) Beyond enzyme production: solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability 12(2):495. https://doi.org/10.3390/su12020495

    Article  CAS  Google Scholar 

  • Vivek K, Venkitasamy C (2023) Role and applications of Fungi in Food and Fermentation Technology. Fungal resources for sustainable economy: current status and future perspectives. Springer Nature Singapore, Singapore, pp 71–87

    Chapter  Google Scholar 

  • Vuong MD, Thanh NT, Son CK, Yves W (2021) Protein enrichment of cassava-based dried distiller’s grain by solid state fermentation using Trichoderma Harzianum and Yarrowia Lipolytica for feed ingredients. Waste Biomass Valoriz 12:3875–3888. https://doi.org/10.1007/s12649-020-01262-4

    Article  CAS  Google Scholar 

  • Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B (2019) In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci Technol 88:1–9. https://doi.org/10.1016/j.tifs.2019.03.005

    Article  CAS  Google Scholar 

  • Wang B, Tan F, Yu F, Li H, Zhang M (2021) Efficient biorefinery of whole cassava for citrate production using A. niger mutated by atmospheric and room temperature plasma and enhanced co-saccharification strategy. J Sci Food Agric 101(11):4613–4620. https://doi.org/10.1002/jsfa.11104

    Article  CAS  PubMed  Google Scholar 

  • Wijitkosum S, Sriburi T (2021) Applying cassava stems biochar produced from agronomical waste to enhance the yield and productivity of maize in unfertile soil. Fermentation 7(4):277. https://doi.org/10.3390/fermentation7040277

    Article  CAS  Google Scholar 

  • Yafetto L, Odamtten GT, Wiafe-Kwagyan M, Heliyon (2023) https://doi.org/10.1016/j.heliyon.2023.e14814

  • Yasin NM, Akkermans S, Van Impe JF (2022) Enhancing the biodegradation of (bio) plastic through pretreatments: a critical review. Waste Manag 150:1–12

    Article  Google Scholar 

  • Zhang M, Xie L, Yin Z, Khanal SK, Zhou Q (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62. https://doi.org/10.1016/j.biortech.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Khan RAA, Wei H, Wang R, Hou J, Liu T (2022) Rapid and mass production of biopesticide Trichoderma Brev T069 from cassava peels using newly established solid-state fermentation bioreactor system. J Environ Manage 313:114981. https://doi.org/10.1016/j.jenvman.2022.114981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support of Tonukari Biotechnology Laboratory, Harmony Pathological Laboratory and all technical personnel who gave assistance in one capacity or the other towards the success of this review.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EOE, TE, OCO, OUE, OJA, EA, AAA and NJT: conceptualization, supervision. All authors have contributed to writing, reviewing, and drafting the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Egoamaka O. Egbune.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egbune, E.O., Ezedom, T., Orororo, O.C. et al. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World J Microbiol Biotechnol 39, 259 (2023). https://doi.org/10.1007/s11274-023-03706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03706-0

Keywords

Navigation