Skip to main content

Advertisement

Log in

Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJ, Townsend G, Sołtysiak A, Alt KW, Parkhill J, Cooper A (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and Industrial revolutions. Nat Genet 45:450–455

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aldridge BB, Rhee KY (2014) Microbial metabolomics: innovation, application, insight. Curr Opin Microbiol 19:90–96

    PubMed  CAS  Google Scholar 

  • Ammons MC, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copié V (2014) Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 13:2973–2985

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK (1986) Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53:587–594

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA (2018) Review of recent developments in GC-MS approaches to metabolomics-based research metabolomics. Metabolomics 14:152

    PubMed  Google Scholar 

  • Bergkessel M, Basta DW, Newman DK (2016) The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14:549–562

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

    PubMed  CAS  Google Scholar 

  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM (2011) Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 10:3190–3199

    PubMed  CAS  Google Scholar 

  • Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C, Poza M, Valle J, Calamia V, Lasa Í, Bou G (2011) Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res 10:3399–3417

    PubMed  CAS  Google Scholar 

  • Candela T, Maes E, Garénaux E, Rombouts Y, Krzewinski F, Gohar M, Guérardel Y (2011) Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide. J Biol Chem 286:31250–31262

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chandramouli KH, Dash S, Zhang Y, Ravasi T, Qian P (2013) Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge. Biofouling 29:789–802

    PubMed  CAS  Google Scholar 

  • Chavez-Dozal A, Gorman C, Nishiguchi MK (2015) Proteomic and metabolomic profiles demonstrate variation among free-living and symbiotic vibrio fischeri biofilms. BMC Microbiol 15:226

    PubMed  PubMed Central  Google Scholar 

  • Christensen BB, Haagensen JA, Heydorn A, Molin S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cornejo OE, Lefébure T, Bitar PD, Lang P, Richards VP, Eilertson K, Do T, Beighton D, Zeng L, Ahn SJ, Burne RA, Siepel A, Bustamante CD, Stanhope MJ (2013) Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol 30:881–893

    PubMed  CAS  Google Scholar 

  • Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C (2023) In vitro models of bacterial biofilms: innovative tools to improve understanding and treatment of infections. Nanomaterials 13:904

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cukkemane N, Bikker FJ, Nazmi K, Brand HS, Sotres J, Lindh L, Arnebrant T, Veerman EC (2015) Anti-adherence and bactericidal activity of sphingolipids against S treptococcus mutans. Europ J Oral Sci 123:221–227

    CAS  Google Scholar 

  • Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JK, Horstkotte MA, Mack D (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185:2879–2886

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186:4596–4604

    PubMed  PubMed Central  CAS  Google Scholar 

  • Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G (2018) Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. Biofouling 34:132–148

    PubMed  CAS  Google Scholar 

  • Fernández-García M, Rojo D, Rey-Stolle F, García A, Barbas C (2018) Metabolomic-based methods in diagnosis and monitoring infection progression. Exp Suppl 109:283–315

    PubMed  PubMed Central  Google Scholar 

  • Fong JCN, Syed KA, Klose KE, Yildiz FH (2010) Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology (reading) 156:2757–2769

    PubMed  CAS  Google Scholar 

  • Garcia Mendez DF, Rengifo Herrera JA, Sanabria J, Wist J (2022) Analysis of the metabolic response of planktonic cells and biofilms of Klebsiella pneumoniae to sublethal disinfection with sodium hypochlorite measured by NMR. Microorganisms. https://doi.org/10.3390/microorganisms10071323

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner JF, Lascelles J (1962) The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. J Gen Microbiol 29:157–164

    PubMed  CAS  Google Scholar 

  • Gaupp R, Schlag S, Liebeke M, Lalk M, GöTz F (2010) Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol 192:2385–2394

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geornaras I, Dykes GA, Von Holy A (1995) Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria. Lett Appl Microbiol 21:164–166

    PubMed  CAS  Google Scholar 

  • Gjersing EL, Herberg JL, Horn J, Schaldach CM, Maxwell RS (2007) NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Anal Chem 79:8037–8045

    PubMed  CAS  Google Scholar 

  • Gnanadhas DP, Elango M, Datey A, Chakravortty D (2015) Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-Methionine in combination with antibiotic therapy. Sci Rep 5:1–14

    Google Scholar 

  • Goldschmidt MC, Powelson DM (1953) Effect of the culture medium on the oxidation of acetate by Micrococcus pyogenes var. aureus. Arch Biochem Biophys 46:154–163

    PubMed  CAS  Google Scholar 

  • Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ, Hamoen LW (2019) Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun 10:1–12

    CAS  Google Scholar 

  • Guo R, Lu H (2020) Targeted metabolomics revealed the regulatory role of manganese on small-molecule metabolism of biofilm formation in Escherichia coli. J Anal Testing 4:226–237

    Google Scholar 

  • Guo R, Luo X, Liu J, Lu H (2021) Mass spectrometry based targeted metabolomics precisely characterized new functional metabolites that regulate biofilm formation in Escherichia coli. Anal Chim Acta 1145:26–36

    PubMed  CAS  Google Scholar 

  • Gupta A, Dwivedi M, Mahdi AA, Khetrapal CL, Bhandari M (2012) Broad identification of bacterial type in urinary tract infection using 1H NMR spectroscopy. J Proteome Res 11:1844–1854

    PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, William Costerton J, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145

    PubMed  CAS  Google Scholar 

  • Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JC (2009) The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10:599

    PubMed  PubMed Central  Google Scholar 

  • Hanada N, Kuramitsu HK (1988) Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun 56:1999–2005

    PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman L, Santarpia P, Zhou X, Koo H (2016) L-arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol 198:2651–2661

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hederstedt L, Rutberg L (1980) Biosynthesis and membrane binding of succinate dehydrogenase in Bacillus subtilis. J Bacteriol 144:941–951

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hederstedt L, Rutberg L (1981) Succinate dehydrogenase–a comparative review. Microbiol Rev 45:542–555

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heffernan AJ, Denny KJ (2021) Host diagnostic biomarkers of infection in the ICU: where are we and where are we going? Curr Infect Dis Rep 23:4

    PubMed  PubMed Central  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010a) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    PubMed  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010b) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674

    PubMed  Google Scholar 

  • Horak I, Engelbrecht G, van Rensburg PJ, Claassens S (2019) Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. J Appl Microbiol 127(326):343

    Google Scholar 

  • Hu X, Wang Y, Gao L, Jiang W, Lin W, Niu C, Yuan K, Ma R, Huang Z (2018) The impairment of methyl metabolism from luxS mutation of Streptococcus mutans. Front Microbiol 9:404

    PubMed  PubMed Central  Google Scholar 

  • Isom CM, Fort B, Anderson GG (2022) Evaluating metabolic pathways and biofilm formation in Stenotrophomonas maltophilia. J Bacteriol 204:e00398-e1321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH (2015) Critical roles of arginine in growth and biofilm development by S treptococcus gordonii. Mol Microbiol 97:281–300

    PubMed  CAS  Google Scholar 

  • Jang I, Kim J, Park W (2016) Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1. Sci Rep 6:1–12

    CAS  Google Scholar 

  • Jensen PØ, Kolpen M, Kragh KN, Kühl M (2017) Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 125:276–288

    PubMed  CAS  Google Scholar 

  • Jiang Y, Geng M, Bai L (2020) Targeting biofilms therapy: current research strategies and development hurdles. Microorganisms. https://doi.org/10.3390/microorganisms8081222

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo J, Price-Whelan A, Dietrich LEP (2022) Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 20:593–607

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459

    PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi RV, Gunawan C, Mann R (2021) We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Front Microbiol 12:635432

    PubMed  PubMed Central  Google Scholar 

  • Junka AF, Deja S, Smutnicka D, Szymczyk P, Ziółkowski G, Bartoszewicz M, Młynarz P (2013) Differences in metabolic profiles of planktonic and biofilm cells in Staphylococcus aureus-(1) H nuclear magnetic resonance search for candidate biomarkers. Acta Biochim Pol 60:701–706

    PubMed  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YH, Lee Y, Kim S, Yeom J, Yeom S, Seok KB, Oh S, Park S, Jeon CO, Park W (2006) The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157: H7 in the formation of biofilms. Proteomics 6:6181–6193

    PubMed  CAS  Google Scholar 

  • Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH (2015) L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS ONE 10:e0121835

    PubMed  PubMed Central  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kouremenos KA, Beale DJ, Antti H, Palombo EA (2014) Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida bacteria in potable water. J Chromatogr B 966:179–186

    CAS  Google Scholar 

  • Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AE, Irie Y, Jensen PØ, Diggle SP, Allen RJ, Gordon V, Bjarnsholt T (2016) Role of multicellular aggregates in biofilm formation. Mbio 7:e00237-e1216

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    PubMed  CAS  Google Scholar 

  • Leggett A, Li D, Bruschweiler-Li L, Sullivan A, Stoodley P, Brüschweiler R (2022) Differential metabolism between biofilm and suspended Pseudomonas aeruginosa cultures in bovine synovial fluid by 2D NMR-based metabolomics. Biorxiv. https://doi.org/10.1038/s41598-022-22127-x

    Article  Google Scholar 

  • Lempp M, Lubrano P, Bange G, Link H (2020) Metabolism of non-growing bacteria. Biol Chem 401:1479–1485

    PubMed  CAS  Google Scholar 

  • Li J, Huang C, Zheng D, Wang Y, Yuan Z (2012) CcpA-mediated enhancement of sugar and amino acid metabolism in Lysinibacillus sphaericus by NMR-based metabolomics. J Proteome Res 11:4654–4661

    PubMed  CAS  Google Scholar 

  • Lichtenberg M, Kragh KN, Fritz B, Bier-Kirkegaard J, Bjarnsholt T (2020) Metabolic flux fingerprinting differentiates planktonic and biofilm states of Pseudomonas aeruginosa and Staphylococcus aureus. BioRxiv 10:629

    Google Scholar 

  • Liu L, Guo S, Chen X, Yang S, Deng X, Tu M, Tao Y, Xiang W, Rao Y (2021) Metabolic profiles of Lactobacillus paraplantarum in biofilm and planktonic states and investigation of its intestinal modulation and immunoregulation in dogs. Food Funct 12:5317–5332

    PubMed  CAS  Google Scholar 

  • Lu H, Que Y, Wu X, Guan T, Guo H (2019) Metabolomics deciphered metabolic reprogramming required for biofilm formation. Sci Rep 9:1–7

    Google Scholar 

  • Lv H, Hung CS, Chaturvedi KS, Hooton TM, Henderson JP (2011) Development of an integrated metabolomic profiling approach for infectious diseases research. Analyst 136:4752–4763

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    PubMed  Google Scholar 

  • Martínez JL, Rojo F (2011) Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev 35:768–789

    PubMed  Google Scholar 

  • Martínez-García S, Peralta H, Betanzos-Cabrera G, Chavez-Galan L, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC (2021) Proteomic comparison of biofilm vs. planktonic Staphylococcus epidermidis cells suggests key metabolic differences between these conditions. Res Microbiol 172:103796

    PubMed  Google Scholar 

  • Mcgee DJ, George AE, Trainor EA, Horton KE, Hildebrandt E, Testerman TL (2011) Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother 55:2897–2904

    PubMed  PubMed Central  CAS  Google Scholar 

  • Méndez HR, Ramasco RF (2023) Biomarkers as prognostic predictors and therapeutic guide in critically ill patients: clinical evidence. J Personal Med 13:333

    Google Scholar 

  • Meylan S, Porter CB, Yang JH, Belenky P, Gutierrez A, Lobritz MA, Park J, Kim SH, Moskowitz SM, Collins JJ (2017) Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol 24:195–206

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mikkelsen H, Swatton JE, Lilley KS, Welch M (2010) Proteomic analysis of the adaptive responses of Pseudomonas aeruginosa to aminoglycoside antibiotics. FEMS Microbiol Lett. https://doi.org/10.1111/j.1574-6968.2009.01729.x

    Article  PubMed  Google Scholar 

  • Mirzaei R, Reza R (2022) Hijacking host components for bacterial biofilm formation: an advanced mechanism. Int Immunopharmacol 103:108471

    PubMed  CAS  Google Scholar 

  • Mirzaei R, Abdi M, Gholami H (2020a) The host metabolism following bacterial biofilm: what is the mechanism of action? Rev Med Microbiol 31:175–182

    Google Scholar 

  • Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri MM, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R (2020b) The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life 72:1271–1285

    PubMed  CAS  Google Scholar 

  • Mirzaei R, Mohammadzadeh R, Sholeh M, Karampoor S, Abdi M, Dogan E, Shokri MM, Kazemi S, Jalalifar S, Dalir A (2020c) The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog 147:104393

    PubMed  CAS  Google Scholar 

  • Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Irajian GR, Jamasbi E, Yousefimashouf R, Bagheri KP (2022a) Highly synergistic effects of melittin with vancomycin and rifampin against vancomycin and rifampin resistant Staphylococcus epidermidis. Front Microbiol. https://doi.org/10.3389/fmicb.2022.869650

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Yousefimashouf R, Bagheri KP (2022b) Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother 147:112670

    PubMed  CAS  Google Scholar 

  • Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S (2022c) Immunometabolism in biofilm infection: lessons from cancer. Mol Med 28:10

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzaei R, Ghaleh HEG, Ranjbar R (2023) Antibiofilm effect of melittin alone and in combination with conventional antibiotics toward strong biofilm of MDR-MRSA and-Pseudomonas aeruginosa. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1030401

    Article  PubMed  PubMed Central  Google Scholar 

  • Møller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732

    PubMed  PubMed Central  Google Scholar 

  • Moreau-Marquis S, Bomberger JM, Anderson GG, Swiatecka-Urban A, Ye S, O’Toole GA, Stanton BA (2008) The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 295:L25-37

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moye ZD, Zeng L, Burne RA (2014) Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol. https://doi.org/10.3402/jom.v6.24878

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento MM, Browngardt C, Xiaohui X, Klepac-Ceraj V, Paster BJ, Burne RA (2014) The effect of arginine on oral biofilm communities. Mol Oral Microbiol 29:45–54

    PubMed  CAS  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240

    PubMed  CAS  Google Scholar 

  • Pande S, Kost C (2017) Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25:349–361

    PubMed  CAS  Google Scholar 

  • Periasamy S, Kolenbrander PE (2010) Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol 192:2965–2972

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pinu FR, Beale DJ (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9:76

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pinu FR, Villas-Boas SG, Aggio R (2017) Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites. https://doi.org/10.3390/metabo7040053

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinu FR, Goldansaz SA, Jaine J (2019) Translational metabolomics: current challenges and future opportunities. Metabolites. https://doi.org/10.3390/metabo9060108

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisithkul T, Schroeder JW, Trujillo EA, Yeesin P, Stevenson DM, Chaiamarit T, Coon JJ, Wang JD, Amador-Noguez D (2019) Metabolic remodeling during biofilm development of Bacillus subtilis. Mbio 10:e006198–e00619

    Google Scholar 

  • Planchon S, Desvaux M, Chafsey I, Chambon C, Leroy S, Hébraud M, Talon R (2009) Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Proteome Res 8:1797–1809

    PubMed  CAS  Google Scholar 

  • Post D, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW (2014) Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 14:1–16

    Google Scholar 

  • Prüß BM, Verma K, Samanta P, Sule P, Kumar S, Wu J, Christianson D, Horne SM, Stafslien SJ, Wolfe AJ (2010) Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation. Arch Microbiol 192:715–728

    PubMed  PubMed Central  Google Scholar 

  • Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM (2004) Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 70:6098–6112

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X (2016) d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol 31:435–444

    PubMed  CAS  Google Scholar 

  • Rathsam C, Eaton RE, Simpson CL, Browne GV, Berg T, Harty DW, Jacques NA (2005) Up-regulation of competence-but not stress-responsive proteins accompanies an altered metabolic phenotype in Streptococcus mutans biofilms. Microbiology 151:1823–1837

    PubMed  CAS  Google Scholar 

  • Resch A, Leicht S, Ma S, Pásztor L, Jakob A, Götz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877

    PubMed  CAS  Google Scholar 

  • Reynolds TB (2009) Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology (reading) 155:1386–1396

    PubMed  CAS  Google Scholar 

  • Rieusset L, Rey M, Muller D, Vacheron J, Gerin F, Dubost A, Comte G, Prigent-Combaret C (2020) Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microb Biotechnol 13:1562–1580

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rochfort S (2005) Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68:1813–1820

    PubMed  CAS  Google Scholar 

  • Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561

    PubMed  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, De Vroom E, Van Der Marel GA, Van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    PubMed  CAS  Google Scholar 

  • Russell RR, Aduse-Opoku J, Sutcliffe IC, Tao L, Ferretti JJ (1992) A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem 267:4631–4637

    PubMed  CAS  Google Scholar 

  • Sadiq FA, Yan B, Zhao J, Zhang H, Chen W (2020) Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. LWT 118:108772

    CAS  Google Scholar 

  • Sadykov MR, Olson ME, Halouska S, Zhu Y, Fey PD, Powers R, Somerville GA (2008) Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis. J Bacteriol 190:7621–7632

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sadykov MR, Zhang B, Halouska S, Nelson JL, Kreimer LW, Zhu Y, Powers R, Somerville GA (2010) Using NMR metabolomics to investigate tricarboxylic acid cycle-dependent signal transduction in Staphylococcus epidermidis. J Biol Chem 285:36616–36624

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sadykov MR, Hartmann T, Mattes TA, Hiatt M, Jann NJ, Zhu Y, Ledala N, Landmann R, Herrmann M, Rohde H (2011) CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology 157:3458

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schulze A, Mitterer F, Pombo JP, Schild S (2021) Biofilms by bacterial human pathogens: clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 8:28–56

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schurek KN, Marr AK, Taylor PK, Wiegand I, Semenec L, Khaira BK, Hancock RE (2008) Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4213–4219

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scoffield J, Silo-Suh L (2016) Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa. Can J Microbiol 62:704–710

    PubMed  CAS  Google Scholar 

  • Secor PR, James GA, Fleckman P, Olerud JE, Mcinnerney K, Stewart PS (2011) Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol 11:1–13

    Google Scholar 

  • Seidl K, Goerke C, Wolz C, Mack D, Berger-Bächi B, Bischoff M (2008) Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76:2044–2050

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G (2020) Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 46:759–778

    PubMed  CAS  Google Scholar 

  • Shanks RM, Meehl MA, Brothers KM, Martinez RM, Donegan NP, Graber ML, Cheung AL, O’Toole GA (2008) Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect Immun 76:2469–2477

    PubMed  PubMed Central  CAS  Google Scholar 

  • She P, Wang Y, Liu Y, Tan F, Chen L, Luo Z, Wu Y (2019) Effects of exogenous glucose on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Microbiologyopen 8:e933

    PubMed  PubMed Central  Google Scholar 

  • Shoji MM, Chen AF (2020) Biofilms in periprosthetic joint infections: a review of diagnostic modalities, current treatments, and future directions. J Knee Surg 33:119–131

    PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    PubMed  CAS  Google Scholar 

  • Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73:233–248

    PubMed  PubMed Central  CAS  Google Scholar 

  • Somerville GA, Cockayne A, Dürr M, Peschel A, Otto M, Musser JM (2003) Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. J Bacteriol 185:6686–6694

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M, Jensen PØ, Whiteley M, Kühl M, Bjarnsholt T (2017) Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Appl Environ Microbiol 83:e00113-00117

    PubMed  PubMed Central  Google Scholar 

  • Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008a) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    PubMed  CAS  Google Scholar 

  • Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KE (2016) A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 12:75

    PubMed  PubMed Central  Google Scholar 

  • Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ (2019) Bacterial metabolism and antibiotic efficacy. Cell Metab 30:251–259

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi N, Washio J, Mayanagi G (2012) Metabolomic approach to oral biofilm characterization—a future direction of biofilm research. J Oral Biosci 54:138–143

    CAS  Google Scholar 

  • Thomas VC, Kinkead LC, Janssen A, Schaeffer CR, Woods KM, Lindgren JK, Peaster JM, Chaudhari SS, Sadykov M, Jones J, Abdelghani SM, Zimmerman MC, Bayles KW, Somerville GA, Fey PD (2013) A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress. Mbio 4:e00113–e00117

    Google Scholar 

  • Thompson FL, Neto AA, Santos EDO, Izutsu K, Iida T (2011) Effect of N-acetyl-D-glucosamine on gene expression in Vibrio parahaemolyticus. Microbes Environ 26:61–66

    PubMed  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484

    PubMed  CAS  Google Scholar 

  • Ueda A, Attila C, Whiteley M, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74

    PubMed  CAS  Google Scholar 

  • Valle J, Da Re S, Schmid S, Skurnik D, D’ari R, Ghigo JM (2008) The amino acid valine is secreted in continuous-flow bacterial biofilms. J Bacteriol 190:264–274

    PubMed  CAS  Google Scholar 

  • Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    PubMed  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, Deleo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    PubMed  CAS  Google Scholar 

  • Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA (2005) Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187:2967–2973

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Bojer MS, George SE, Wang Z, Jensen PR, Wolz C, Ingmer H (2018) Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Sci Rep 8:1–13

    Google Scholar 

  • Wang T., Shen P., He Y., Zhang Y., and Liu J. (2023). Spatial transcriptome uncovers rich coordination of metabolism in E. coli K12 biofilm. Nature Chemical Biology

  • Webb AJ, Homer KA, Hosie AH (2008) Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake. J Bacteriol 190:168–178

    PubMed  CAS  Google Scholar 

  • Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484

    PubMed  CAS  Google Scholar 

  • Wong HS, Maker GL, Trengove RD, O’handley RM (2015) Gas chromatography-mass spectrometry-based metabolite profiling of Salmonella enterica serovar Typhimurium differentiates between biofilm and planktonic phenotypes. Appl Environ Microbiol 81:2660–2666

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF (2018) Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains. Sci Rep 8:1–9

    Google Scholar 

  • Workentine ML, Harrison JJ, Weljie AM, Tran VA, Stenroos PU, Tremaroli V, Vogel HJ, Ceri H, Turner RJ (2010) Phenotypic and metabolic profiling of colony morphology variants evolved from Pseudomonas fluorescens biofilms. Environ Microbiol 12:1565–1577

    PubMed  CAS  Google Scholar 

  • Xu Z, Xin F, Wood TK, Huang ZJ (2013) A systems-level approach for investigating Pseudomonas aeruginosa biofilm formation. PLoS ONE 8:e57050

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yeom J, Shin J, Yang J, Kim J, Hwang G (2013) 1H NMR-Based metabolite profiling of planktonic and biofilm Cells in Acinetobacter baumannii 1656–2. PLoS ONE 8:e57730

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng J, Yang Y, Fan H, Lu C (2014) Biofilm formation of Streptococcus equi ssp. zooepidemicus and comparative proteomic analysis of biofilm and planktonic cells. Curr Microbiol 69:227–233

    PubMed  CAS  Google Scholar 

  • You Y, Xue T, Cao L, Zhao L, Sun H, Sun B (2014) Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner. Int J Med Microbiol 304:603–612

    PubMed  CAS  Google Scholar 

  • Zhang B, Powers R (2012) Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem 4:1273–1306

    PubMed  CAS  Google Scholar 

  • Zhu Y, Weiss EC, Otto M, Fey PD, Smeltzer MS, Somerville GA (2007) Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infect Immun 75:4219–4226

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Xiong YQ, Sadykov MR, Fey PD, Lei MG, Lee CY, Bayer AS, Somerville GA (2009) Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. Infect Immun 77:4256–4264

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JM, AAA, SSA-J, OFF, ALA, RFO, AAA, ASA, JG, YFM wrote the draft and collected the documentation materials. SK, and RM participated in revising the draft. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Sajad Karampoor or Rasoul Mirzaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

None.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, J., Alameri, A.A., Al-Janabi, S.S. et al. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 39, 212 (2023). https://doi.org/10.1007/s11274-023-03651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03651-y

Keywords

Navigation