Skip to main content
Log in

Anti-infective potential of plant-derived quorum sensing inhibitors against multi-drug resistant human and aquatic bacterial pathogens

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present study intended to decipher the anti-infective potential of bioactive phytocompounds, such as rosmarinic acid, morin, naringin, chlorogenic acid, and mangiferin, against aquatic and human bacterial pathogens using Artemia spp. nauplii and Caenorhabditis elegans as animal models, respectively. Initially, the test compounds were screened against the QS traits in Vibrio spp., such as bioluminescence production and biofilm formation. The test compounds effectively inhibited the bioluminescence in V. harveyi. Further, the confocal laser scanning microscopic analysis revealed that these natural compounds could efficiently reduce the clumping morphology, a characteristic biofilm formation in Vibrio spp., without inhibiting bacterial growth. The results of in vivo analysis showed a significant increase in the survival of Artemia spp. nauplii infected with Vibrio spp. upon exposure to these compounds. Moreover, the compounds used in this study were already proven and reported for their quorum sensing inhibitory efficacy against Pseudomonas aeruginosa. Hence, the anti-infective efficacy of these compounds against P. aeruginosa (PAO1) and its clinical isolates (AS1 and AS2) was studied using C. elegans as a live animal model system. The results of time-killing assay deciphered that rosmarinic acid and naringin are being the most effective ones in rescuing the animals from P. aeruginosa infection followed by morin, mangiferin, and chlorogenic acid. Further, the toxicity results revealed that these compounds did not show any lethal effect on C. elegans and Artemia spp. nauplii at the tested concentrations. In conclusion, the phytochemicals used in this study were effective in controlling the QS-regulated virulence traits in Vibrio spp. and P. aeruginosa infections in Artemia spp. nauplii and C. elegans animal model systems, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the authors have contributed to this research work and approved the submission. The data supporting this study’s findings are available with the authors. Data are not publically available; however, it is available from the authors upon reasonable request.

References

  • Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A (2020) Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: an in vitro and in vivo approaches. Front Microbiol 11:561298. https://doi.org/10.3389/fmicb.2020.561298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L (2016) The pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the transcriptional response of nematicidal genes upon different nutritional conditions. Front Microbiol 7:805. https://doi.org/10.3389/fmicb.2016.00805

    Article  PubMed  PubMed Central  Google Scholar 

  • Annapoorani A, Jabbar AKKA, Musthafa SKS, Pandian SK, Ravi AV (2012a) Inhibition of quorum sensing mediated virulence factors production in urinary pathogen Serratia marcescens PS1 by marine sponges. Indian J Microbiol 52:160–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Annapoorani A, Parameswari R, Pandian SK, Ravi AV (2012b) Methods to determine antipathogenic potential of phenolic and flavonoid compounds against urinary pathogen Serratia marcescens. J Microbiol Methods 9:208–211

    Article  Google Scholar 

  • Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012c) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26:1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signaling in Vibrio harveyi sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786

    Article  CAS  PubMed  Google Scholar 

  • Bosgelmez GT (2003) Quorum sensing in Gram-negative bacteria. Turk J Biol 27:85–93

    Google Scholar 

  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Calenbergh SV, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Brock JA, Bullis R (2001) Disease prevention and control for gametes and embryos of fish and marine shrimp. Aquaculture 197:137–159

    Article  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Mar Sci Res Dev S. https://doi.org/10.4172/2155-9910.S1-002. 1:002.

    Article  Google Scholar 

  • Croxatto A, Lauritz J, Chen C, Milton DL (2007) Vibrio anguillarum colonization of rainbow trout integument requires a DNA locus involved in exopolysaccharide transport and biosynthesis. Environ Microbiol 9:370–382

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240:69–88

    Article  Google Scholar 

  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2008) Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J 2:19–26

    Article  CAS  PubMed  Google Scholar 

  • Estrela AB, Abraham WR (2010) Combining biofilm-controlling compounds and antibiotics as a promising new way to control biofilm infections. Pharmaceuticals 3:1374–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98:113–123

    Article  CAS  PubMed  Google Scholar 

  • Guzman GA, Ruiz HM, Ascencio F (2004) A review of extracellular virulence product of Vibrio species important in disease of cultivated shrimp. Aquacult Res 35:1395–1404

    Article  Google Scholar 

  • Guzman JPMD, Yatip P, Soowannayan C, Maningasa MBB (2022) Piper betle L. leaf extracts inhibit quorum sensing of shrimp pathogen Vibrio harveyi and protect Penaeus vannamei post larvae against bacterial infection. Aquaculture 547:737452

    Article  CAS  Google Scholar 

  • Hameed ASS, Rahaman KH, Alagan A, Yoganandhan K (2003) Antibiotic resistance in bacteria isolated from hatchery-reared larvae and post-larvae of Macrobrachium rosenbergii. Aquaculture 217:39–48

    Article  Google Scholar 

  • Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6:e1000982. https://doi.org/10.1371/journal.ppat.1000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote–eukaryote boundary. Science 298:1207

    Article  PubMed  Google Scholar 

  • Kandasamy S, Khan W, Evans F, Crotchety A, Prithiviraj B (2012) A product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Mar Drugs 10:84–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Lee SE, Kim YR, Kim CM, Ryu PY, Choy H, Chung SS, Rhee JH (2003) Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol Microbiol 48:1647–1664

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Hendricks GL, Lee K, Mylonakis E (2017) An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs. Expert Opin Drug Discov 12(6):625–633

    Article  CAS  PubMed  Google Scholar 

  • Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma-54. Mol Microbiol 36:940–954

    Article  CAS  PubMed  Google Scholar 

  • Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28

  • Manefield M, Harris L, Rice SA, De Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084

  • Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-homoserine lactone. J Bacteriol 179:3004–3012

  • Moal VLL, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides and microbiota. Clin Microbiol Rev 19:315–337

    Article  Google Scholar 

  • Molina-Aja A, Garcia-Gasca A, Abreu-Grobois A, Bolan-Mejia C, Roque A, Gomez-Gil B (2002) Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured penaeid shrimp. FEMS Microbiol Lett 213:7–12

    Article  CAS  PubMed  Google Scholar 

  • Musthafa KS, Sivamaruthi BS, Pandian SK, Ravi AV (2012b) Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenyl acetic acid. Curr Microbiol 65:475–480

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    Article  PubMed  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithya C, Pandian SK (2010) The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Microbiol 192:843–854

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi AV, Musthafa KS, Jegathammbal G, Kathiresan K, Pandian SK (2007) Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol 45:219–223

    Article  CAS  PubMed  Google Scholar 

  • Ravindran D, Ramanathan S, Arunachalam K, Jeyaraj GP, Shunmugiah KP, Arumugam VR (2018) Phytosynthesized silver nanoparticles as anti-quorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study. J Appl Microbiol 124(6):1425–1440

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858

    Article  CAS  PubMed  Google Scholar 

  • Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189:5383–5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumari S, Jayakumar R, Logalakshmi R, Prabhu NM, Nazar AK, Pandian SK, Ravi AV (2018) In vitro and in vivo effect of 2, 6-Di-tert-butyl-4-methylphenol as an antibiofilm agent against quorum sensing mediated biofilm formation of Vibrio spp. Int J Food Microbiol 281:60–71

    Article  CAS  PubMed  Google Scholar 

  • Satish L, Santhakumari S, Gowrishankar S, Pandian SK, Ravi AV, Ramesh M (2017) Rapid biosynthesized AgNPs from Gelidiella acerosa aqueous extract mitigates quorum sensing mediated biofilm formation of Vibrio species: an in vitro and in vivo approach. Environ. Sci Pollut Res Int 24(35):27254–27268

    Article  CAS  PubMed  Google Scholar 

  • Scott E, Holden-Dye L, O’Connor V, Wand ME (2020) Intra strain variation of the effects of gram-negative ESKAPE pathogens on intestinal colonization, host viability, and host response in the model organism Caenorhabditis elegans. Front Microbiol 10:3113. https://doi.org/10.3389/fmicb.2019.03113

    Article  PubMed  PubMed Central  Google Scholar 

  • Senturk S, Ulusoy S, Bosgelmez TG, Yagci A (2012) Quorum sensing and virulence of Pseudomonas aeruginosa during urinary tract infections. J Infect Dev Ctries 6:501–507

    Article  CAS  PubMed  Google Scholar 

  • Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Santhakumari S, Ravi AV (2017) In vitro antibiofilm efficacy of Piper betle against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi. Microb Pathog 110:232–239

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A, Balamurugan K, Devi KP, Ravi AV (2017) Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environ Sci Pollut Res Int 25(11):0538–10554

    Google Scholar 

  • Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS. (1997). Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acyl homoserine lactone signal molecules. J Bacteriol 179:5271–5281.

  • Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527

    Article  CAS  PubMed  Google Scholar 

  • Vincent AT, Gauthier J, Derome N, Charette SJ (2019) The rise and fall of antibiotics in aquaculture. In: Derome N (ed) Microbial Communities in Aquaculture Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-16190-31.

    Chapter  Google Scholar 

  • Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors AA, VB, BA, KA, SVPIA, SM, BK, and AV gratefully acknowledge the computational and bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by the Department of Biotechnology, Government of India; Grant No. BT/BI/25/001/2006). AA gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi [Grant No. 9/688 (0014)/2011] and Dr. D. S. Kothari Post Doctoral Fellowship, UGC, New Delhi for the financial assistance rendered [Grant No: F.4 − 2/2006(BSR)/BL/18–19/0298]. AA gratefully acknowledges the Department of Zoology, University of Madras (Guindy Campus), Chennai, for the academic support under the DST-FIST scheme.

Author information

Authors and Affiliations

Authors

Contributions

AA, VB, and AV conceived and designed research, AA, VB and BA conducted experiments, and KA, SVPIA, and SM provided support to conduct the experiments and manuscript preparation. BK and AVR contribution of chemicals, Artemia spp. nauplii and C. elegans. AA wrote the manuscript. AVR and JS manuscript correction.

Corresponding author

Correspondence to Veera Ravi Arumugam.

Ethics declarations

Conflict of interest

There is no conflict of interest declared by all the authors of this manuscript.

Ethical approval

This article does not contain any studies with human participants or vertebrate animal models performed by any authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angusamy, A., Balasubramanian, V., Arunmurugan, B. et al. Anti-infective potential of plant-derived quorum sensing inhibitors against multi-drug resistant human and aquatic bacterial pathogens. World J Microbiol Biotechnol 39, 147 (2023). https://doi.org/10.1007/s11274-023-03578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03578-4

Keywords

Navigation