Skip to main content
Log in

Microbial silver resistance mechanisms: recent developments

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds.

Graphical abstract

Figure created with BioRender.com.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abriat C, Gazil O, Heuzey MC et al (2021) The polymeric matrix composition of Vibrio cholerae biofilms modulate resistance to silver nanoparticles prepared by hydrothermal synthesis. ACS Appl Mater Interfaces 13:35356–35364

    Article  CAS  PubMed  Google Scholar 

  • Abul Qais F, Samreen, Ahmad I (2018) Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach. IET Nanobiotechnol 12:325–335

    Article  PubMed Central  Google Scholar 

  • Adle DJ, Sinani D, Kim H et al (2007) A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae. J Biol Chem 282::947–955

    Article  CAS  PubMed  Google Scholar 

  • Al-Ansari MM, Dhasarathan P, Ranjitsingh AJA et al (2020) Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI. Saudi J Biol Sci 27:2993–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves-Barroco C, Rivas-Garcia L, Fernandes AR (2022) Light triggered enhancement of antibiotic efficacy in biofilm elimination mediated by gold-silver alloy nanoparticles. Front Microbiol 13:841124

    Article  PubMed  PubMed Central  Google Scholar 

  • Arslan M, Holyavkin C, Kisakesen HI et al (2018) Physiological and transcriptomic analysis of a chronologically long-lived Saccharomyces cerevisiae strain obtained by evolutionary engineering. Mol Biotechnol 60:468–484

    Article  CAS  PubMed  Google Scholar 

  • Asiani KR, Williams H, Bird L et al (2016) SilE is an intrinsically disordered periplasmic “molecular sponge” involved in bacterial silver resistance. Mol Microbiol 101:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Nakatsu CH, Bhunia AK (2021) Bacterial biofilms and their implications in pathogenesis and food safety. Foods 10:2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balagna C, Perero S, Percivalle E et al (2020) Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram 1:100006

    Article  Google Scholar 

  • Barros D, Pradhan A, Pascoal C, Cássio F (2021) Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environ Pollut 268:115913

    Article  CAS  PubMed  Google Scholar 

  • Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15:627–634

    Article  CAS  PubMed  Google Scholar 

  • Bayat N, Rajapakse K, Marinsek-Logar R et al (2014) The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae. Nanotoxicology 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Beneš V, Leonhardt T, Sácký J et al (2018) Two P(1B-1)-ATPases of Amanita strobiliformis with distinct properties in Ag/Cu transport. Front Microbiol 9:747

    Article  PubMed  PubMed Central  Google Scholar 

  • Çakar ZP, Turanlı-Yıldız B, Alkım C et al (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182

    Article  PubMed  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Ghosh R, Mandal NC (2020) Inhibition of biofilm- and hyphal- development, two virulent features of Candida albicans by secondary metabolites of an endophytic fungus Alternaria tenuissima having broad spectrum antifungal potential. Microbiol Res 232:126386

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  PubMed  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  CAS  PubMed  Google Scholar 

  • Dal Co A, Brenner MP (2020) Tracing cell trajectories in a biofilm. Science 369:6499

    Article  CAS  Google Scholar 

  • Despax B, Saulou C, Raynaud P et al (2011) Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae. Nanotechnology 22:175101

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Seabra AB, de Lima R (2014) Cytotoxicity and genotoxicity of biogenically synthesized silver nanoparticles. J Phys 1:245–263

    Google Scholar 

  • Dutsch-Wicherek M, Sikora J, Tomaszewska R (2008) The possible biological role of metallothionein in apoptosis. Front Biosci 13:4029–4038

    Article  CAS  PubMed  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

    Article  CAS  PubMed  Google Scholar 

  • El Sayed MT, El-Sayed ASA (2020) Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 6:e03866

    Article  PubMed  PubMed Central  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Foka FET, Mienie C, Bezuidenhout CC et al (2020) Complete genomic analysis of VRE from a cattle feedlot: Focus on 2 antibiotic resistance. Front Microbiol 11:571958

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 52:552–563

    Article  PubMed  Google Scholar 

  • Galván Márquez I, Ghiyasvand M, Massarsky A et al (2018) Zinc oxide and silver nanoparticles toxicity in the baker’s yeast, Saccharomyces cerevisiae. PLoS ONE 13:e0193111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam LK, Sharma P, Capalash N (2021) Attenuation of Acinetobacter baumannii virulence by inhibition of polyphosphate kinase 1 with repurposed drugs. Microbiol Res 242:126627

    Article  CAS  PubMed  Google Scholar 

  • Gilmour MW, Thomson NR, Sanders M et al (2004) The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52:182–202

    Article  CAS  PubMed  Google Scholar 

  • Graves JL Jr, Tajkarimi M, Cunningham Q et al (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gugala N, Lemire J, Chatfield-Reed K et al (2018) Using a chemical genetic screen to enhance our understanding of the antibacterial properties of silver. Genes (Basel) 9:344

    Article  CAS  Google Scholar 

  • Gupta A, Phung LT, Taylor DE et al (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiol-SGM 147:3393–3402

    Article  CAS  Google Scholar 

  • Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomedicine Biotechnol 45:1588–1596

    Article  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55::913–951

    Article  Google Scholar 

  • Holland SL, Dyer PS, Bond CJ et al (2011) Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 115:909–918

    Article  CAS  PubMed  Google Scholar 

  • Horstmann C, Campbell C, Kim DS et al (2019) Transcriptome profile with 20 nm silver nanoparticles in yeast. FEMS Yeast Res 19:foz003

    Article  CAS  Google Scholar 

  • Hwang IS, Lee J, Hwang JH et al (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Ikuma K, Decho AW, Lau BL (2015) When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol 6:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamshidinia N, Mohammadipanah F (2022) Nanomaterial-augmented formulation of disisnfectants and antiseptics in controlling SARS CoV-2. Food Environ Virol 14:105–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeremiah SS, Miyakawa K, Morita T et al (2020) Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun 533:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian Y, Chen X, Ahmed T et al (2022) Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J Adv Res 38:1–12

    Article  CAS  PubMed  Google Scholar 

  • Jin YH, Dunlap PE, McBride SJ et al (2008) Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 4:e1000053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanugala S, Kumar CG, Rachamalla HKR et al (2019) Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice. Microbiol Res 228:126301

    Article  CAS  PubMed  Google Scholar 

  • Käosaar S, Kahru A, Mantecca P et al (2016) Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicol In Vitro 35::149–162

    Article  CAS  Google Scholar 

  • Karygianni L, Ren Z, Koo H et al (2020) Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 28(8):668–681

    Article  CAS  PubMed  Google Scholar 

  • Kasemets K, Käosaar S, Vija H et al (2019) Toxicity of differently sized and charged silver nanoparticles to yeast Saccharomyces cerevisiae BY4741: a nano-biointeraction perspective. Nanotoxicology 13:1041–1059

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Suh BK et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  PubMed  Google Scholar 

  • Kudrinskiy AA, Ivanov AY, Kulakovskaya EV et al (2014) The mode of action of silver and silver halides nanoparticles against Saccharomyces cerevisiae cells. J Nanoparticles 2014:568635

    Article  CAS  Google Scholar 

  • Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  PubMed  CAS  Google Scholar 

  • Lara HH, Lopez-Ribot JL (2020) Inhibition of Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 9:784

    Article  CAS  PubMed Central  Google Scholar 

  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L et al (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Article  CAS  Google Scholar 

  • Lara HH, Romero-Urbina DG, Pierce C et al (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:91

    Article  CAS  Google Scholar 

  • Lee A-R, Lee S-J, Lee M et al (2017) A genome-wide screening of target genes against silver nanoparticles in fission yeast. Toxicol Sci 161:171–185

    Article  PubMed Central  CAS  Google Scholar 

  • Lee B, Lee MJ, Yun SJ et al (2019) Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. Int J Nanomedicine 14::4801–4816

    Article  Google Scholar 

  • Li Z, Cai Z, Cai Z et al (2020) Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. J Antimicrob Chemother 75:1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Lima de Silva AA, de Carvalho MA, de Souza SA et al (2012) Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage. Braz J Microbiol 43:1620–1631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Zhu X, Zhang C et al (2021) LuxQ-LuxU-LuxO pathway regulates biofilm formation by Vibrio parahaemolyticus. Microbiol Res 250:126791

    Article  CAS  PubMed  Google Scholar 

  • Lok CN, Ho CM, Chen R et al (2008) Proteomic identification of the Cus system as a major determinant of constitutive Escherichia coli silver resistance of chromosomal origin. J Proteome Res 7:2351–2356

    Article  PubMed  Google Scholar 

  • Madigan MT, Bender KS, Buckley DH et al (2019) Brock biology of microorganisms, Fifteenth edn. Pearson Education, Harlow, United Kingdom

    Google Scholar 

  • Majeed S, Abdullah MS, bin, Dash GK et al (2016) Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 14:615–620

    CAS  PubMed  Google Scholar 

  • Majeed S, Danish M, Binti Zahrudin AH, Dash GK (2018) Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int J Mod Sci 4:86–92

    Article  Google Scholar 

  • Markowska K, Grudniak AM, Milczarek B et al (2018) The effect of silver nanoparticles on Listeria monocytogenes PCM2191 peptidoglycan metabolism and cell permeability. Pol J Microbiol 67:315–320

    Article  PubMed  PubMed Central  Google Scholar 

  • McQuillan JS, Infante HG, Stokes E et al (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Mehrbod P, Motamed N, Tabatabaian M et al (2009) In vitro antiviral effect of “Nanosilver” on influenza virus. DARU J Pharm Sci 17(2):88–93

    CAS  Google Scholar 

  • Mijnendonckx K, Leys N, Mahillon J et al (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26:609–621

    Article  CAS  PubMed  Google Scholar 

  • Monych NK, Turner RJ (2020) Multiple Compounds Secreted by Pseudomonas aeruginosa Increase the Tolerance of Staphylococcus aureus to the Antimicrobial Metals Copper and Silver. mSystems 5:e00746–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno A, Demitri N, Ruiz-Baca E et al (2019) Bioreduction of precious and heavy metals by Candida species under oxidative stress conditions. Microb Biotechnol 12:1164–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M (2018) Bacterial Silver Resistance Gained by Cooperative Interspecies Redox Behavior. Antimicrob Agents Chemother 62:e00672–18

  • Muller M, Merrett ND (2014) Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob Agents Chemother 58:5492–5499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niazi JH, Sang BI, Kim YS et al (2011) Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles. Appl Biochem Biotechnol 164:1278–1291

    Article  CAS  PubMed  Google Scholar 

  • Olasupo NA, Scott-Emuakpor MB, Ogunshola RA (1993) Resistance to heavy metals by some Nigerian yeast strains. Folia Microbiol (Praha) 38:285–287

    Article  CAS  Google Scholar 

  • Onyewu C, Blankenship JR, Del Poeta M et al (2003) Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S et al (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HJ, Kim JY, Kim J et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Shukla A, Goswami D et al (2020) Comprehensive depiction of novel heavy metal tolerant and EPS producing bioluminescent Vibrio alginolyticus PBR1 and V. rotiferianus PBL1 confined from marine organisms. Microbiol Res 238:126526

    Article  CAS  PubMed  Google Scholar 

  • Peixoto S, Loureiro S, Henriques I (2022) The impact of silver sulfide nanoparticles and silver ions in soil microbiome. J Hazard Mater 422:126793

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Dias N, Carvalho J et al (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 117:1601–1613

    Article  CAS  PubMed  Google Scholar 

  • Pümpel T, Schinner F (1986) Silver tolerance and silver accumulation of microorganisms from soil materials of a silver mine. Appl Microbiol Biotechnol 24:244–247

    Article  Google Scholar 

  • Qais FA, Shafiq A, Ahmad I et al (2020) Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb Pathog 144:104172

    Article  PubMed  CAS  Google Scholar 

  • Qin B, Fei C, Bridges AA et al (2020) Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 369:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rad MR, Kirchrath L, Hollenberg CP (1994) A putative P-type Cu(2+)-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae. Yeast 10:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan VS, Reddy Mudiam MK, Kumar M et al (2018) Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nanomedicine 13:2647–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP et al (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  PubMed  Google Scholar 

  • Randall CP, Oyama LB, Bostock JM et al (2013) The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother 68:131–138

    Article  CAS  PubMed  Google Scholar 

  • Randall CP, Gupta A, Jackson N et al (2015) Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother 70:1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182:4899–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JR, Isikhuemhen OS, Anike FN (2021) Fungal–Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi 7:225

    Article  CAS  Google Scholar 

  • Ruhal R, Kataria R (2021) Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 251:126829

    Article  CAS  PubMed  Google Scholar 

  • Ruta LL, Banu MA, Neagoe AD et al (2018) Accumulation of Ag(I) by Saccharomyces cerevisiae cells expressing plant metallothioneins. Cells 7:266

    Article  CAS  PubMed Central  Google Scholar 

  • Saeb ATM, Al-Rubeaan KA, Abouelhoda M et al (2017) Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1. Antimicrob Resist Infect Control 6:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanglard D, Ischer F, Marchetti O et al (2003) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976

    Article  CAS  PubMed  Google Scholar 

  • Santos EMP, Martins CCB, Santos JVD et al (2021a) Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition. J Nanoparticle Res 23:196

    Article  CAS  Google Scholar 

  • Santos TS, Silva TM, Cardoso JC et al (2021b) Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics 10:852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:130–166

    Google Scholar 

  • Saulou C, Jamme F, Maranges C et al (2010) Synchrotron FTIR microspectroscopy of the yeast Saccharomyces cerevisiae after exposure to plasma-deposited nanosilver-containing coating. Anal Bioanal Chem 396::1441–1450

    Article  CAS  Google Scholar 

  • Saulou C, Jamme F, Girbal L et al (2013) Synchrotron FTIR microspectroscopy of Escherichia coli at single-cell scale under silver-induced stress conditions. Anal Bioanal Chem 405::2685–2697

    Article  CAS  Google Scholar 

  • Selvaraj A, Valliammai A, Premika M et al (2021) Sapindus mukorossi Gaertn. and its bioactive metabolite oleic acid impedes methicillin-resistant Staphylococcus aureus biofilm formation by down regulating adhesion genes expression. Microbiol Res 242:126601

    Article  CAS  PubMed  Google Scholar 

  • Şen M, Yılmaz U, Baysal A et al (2011) In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus. Antonie Van Leeuwenhoek 99:825–835

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Parmar P, Patel B et al (2021) Breaking bad: Better call gingerol for improving antibiotic susceptibility of Pseudomonas aeruginosa by inhibiting multiple quorum sensing pathways. Microbiol Res 252:126863

    Article  CAS  PubMed  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung le T, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    Article  CAS  PubMed  Google Scholar 

  • Sportelli MC, Izzi M, Kukushkina EA et al (2020) Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials. (Basel Switzerland) 10:802

    CAS  Google Scholar 

  • Staehlin BM, Gibbons JG, Rokas A et al (2016) Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in enterobacteria. Genome Biol Evol 8:811–826

    PubMed  PubMed Central  Google Scholar 

  • Sudheer Khan S, Bharath Kumar E, Mukherjee A et al (2011) Bacterial tolerance to silver nanoparticles (SNPs): Aeromonas punctata isolated from sewage environment. J Basic Microbiol 51::183–190

    Article  CAS  Google Scholar 

  • Sultan I, Ali A, Gogry FA et al (2020) Bacterial isolates harboring antibiotics and heavy-metal resistance genes co-existing with mobile genetic elements in natural aquatic water bodies. Saudi J Biol Sci 27:2660–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taff HT, Nett JE, Zarnowski R et al (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzioğlu E, Alkım C, Arslan M et al (2020) Genomic, transcriptomic and physiological analyses of silver-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Yeast 37:413–426

    Article  PubMed  CAS  Google Scholar 

  • Trefry JC (2011) The development of silver nanoparticles as antiviral agents. Doctoral dissertation, Wright State University

  • Trefry JC, Wooley DP (2012) Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J Virol Methods 183:19–24

    Article  CAS  PubMed  Google Scholar 

  • Vagabov VM, Ivanov AY, Kulakovskaya TV et al (2008) Efflux of potassium ions from cells and spheroplasts of Saccharomyces cerevisiae yeast treated with silver and copper ions. Biochem (Mosc) 73:1224–1227

    Article  CAS  Google Scholar 

  • Vazquez-Munoz R, Lopez-Ribot JL (2020) Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 11:15

    Article  Google Scholar 

  • Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E (2014) Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS ONE 9:e108876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vest KE, Leary SC, Winge DR et al (2013) Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein. J Biol Chem 288:23884–23892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völlmecke C, Drees SL, Reimann J et al (2012) The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiol-SGM 158:1622–1633

    Article  CAS  Google Scholar 

  • Wang X, Cheng Y, Zhang W et al (2021) (p)ppGpp synthetases are required for the pathogenicity of Salmonella Pullorum in chickens. Microbiol Res 245:126685

    Article  CAS  PubMed  Google Scholar 

  • Wei MP, Yu H, Gou YH et al (2022) Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res 254:126912

    Article  CAS  PubMed  Google Scholar 

  • Xie JL (2017) Stress response pathways regulate drug resistance and morphogenesis in the human fungal pathogen Candida albicans. Doctoral dissertation, University of Toronto

  • Yang HC, Pon LA (2003) Toxicity of metal ions used in dental alloys: a study in the yeast Saccharomyces cerevisiae. Drug Chem Toxicol 26:75–85

    Article  CAS  PubMed  Google Scholar 

  • Yazgan A, Özcengiz G (1994) Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 16:871–874

    Article  CAS  Google Scholar 

  • Yazgan A, Ozcengiz G, Alaeddinoglu NG (1993) Studies on metal resistance system in Kluyveromyces marxianus. Biol Trace Elem Res 38:117–127

    Article  CAS  PubMed  Google Scholar 

  • Yuan DS, Stearman R, Dancis A et al (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 92:2632–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pan X, Liao S et al (2020) Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 19:3109–3122

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang S, Ren W et al (2021a) Roles of rpoN in biofilm formation of Vibrio alginolyticus HN08155 at different cell densities. Microbiol Res 247:126728

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dang D, Zheng LS et al (2021b) Effect of Ag nanoparticles on denitrification and microbial community in a paddy soil. Front Microbiol 12:785439

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qi J, Wang Y et al (2022) Comparative study of the role of surfactin-triggered signaling in biofilm formation among different Bacillus species. Microbiol Res 254:126920

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Udagedara SR, Sze CM et al (2012) PcoE–a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115:186–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review paper is dedicated to the memory of Prof. Dr. Fatma Neşe Kök, our beloved Head of the Department of Molecular Biology and Genetics, Istanbul Technical University (ITU), and Director of Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), who passed away while this paper was under revision.

Author information

Authors and Affiliations

Authors

Contributions

ZPÇ prepared the outline for the manuscript. ET, MA, BGB and ZPÇ wrote the main manuscript text. ZPÇ revised the manuscript. ET and MA prepared Figures 1-3. ET prepared the Graphical Abstract. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zeynep Petek Çakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ergi Terzioğlu and Mevlüt Arslan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzioğlu, E., Arslan, M., Balaban, B.G. et al. Microbial silver resistance mechanisms: recent developments. World J Microbiol Biotechnol 38, 158 (2022). https://doi.org/10.1007/s11274-022-03341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03341-1

Keywords

Navigation