Skip to main content
Log in

Computerized fluorescence microscopy of microbial cells

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The upgrading of fluorescence microscopy by the introduction of computer technologies has led to the creation of a new methodology, computerized fluorescence microscopy (CFM). CFM improves subjective visualization and combines it with objective quantitative analysis of the microscopic data. CFM has opened up two fundamentally new opportunities for studying microorganisms. The first is the quantitative measurement of the fluorescence parameters of the targeted fluorophores in association with certain structures of individual cells. The second is the expansion of the boundaries of visualization/resolution of intracellular components beyond the "diffraction limit" of light microscopy into the nanometer range. This enables to obtain unique information about the localization and dynamics of intracellular processes at the molecular level. The purpose of this review is to demonstrate the potential of CFM in the study of fundamental aspects of the structural and functional organization of microbial cells. The basics of computer processing and analysis of digital images are briefly described. The fluorescent molecules used in CFM with an emphasis on fluorescent proteins are characterized. The main methods of super-resolution microscopy (nanoscopy) are presented. The capabilities of various CFM methods for exploring microbial cells at the subcellular level are illustrated by the examples of various studies on yeast and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFM:

Computerized fluorescence microscopy,

FP:

Fluorescent protein

CIPA:

Computer image processing and analysis

GFP:

Green fluorescent protein

fPALM/PALM:

Fluorescence photoactivation localisation microscopy

STORM:

Stochastic optical reconstruction microscopy

SIM:

Structured illumination microscopy

STED:

Stimulated emission depletion microscopy

SMLM:

Single molecule localization microscopy

smFISH:

Single molecule fluorescence in situ hybridization

QCM:

Quantitative confocal microscopy

References

  • Akamatsu M, Lin Y, Bewersdorf J et al (2017) Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy. Mol Biol Cell 28:3203–3214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altinoglu I, Merrifield CJ, Yamaichi Y (2019) Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 9:6680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arasada R, Sayyad WA, Berro J et al (2018) High-speed superresolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches. Mol Biol Cell 29:295–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photoswitchable fluorescent probes. Science 317:1749–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berk V, Fong JC, Dempsey GT et al (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:236–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bestul AJ, Yu Z, Unruh JR et al (2017) Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 216:2409–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Biteen JS, Shapiro L, Moerner WE (2011) Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging. Methods Mol Biol 783:139–158. https://doi.org/10.1007/978-1-61779-282-3_8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjerling P, Olsson I, Meng X (2012) Quantitative live cell fluorescence-microscopy analysis of fission yeast. J Vis Exp 59:e3454

    Google Scholar 

  • Burns S, Avena JS, Unruh JR et al (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 4:e08586

    Article  PubMed Central  Google Scholar 

  • Cambré A, Aertsen A (2020) Bacterial vivisection, how fluorescence-based imaging techniques shed a light on the inner workings of bacteria. Microbiol Mol Biol Rev 84:e00008-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell RE (2008) Fluorescent proteins. Scholarpedia 3:5410

    Article  Google Scholar 

  • Chen J, McSwiggen D, Ünal E (2018) Single molecule fluorescence in situ hybridization (smFISH) analysis in budding yeast vegetative growth and meiosis. J Vis Exp 135:e57774

    Google Scholar 

  • Choi H, Rangarajan N, Weisshaar JC (2016) Lights, camera, action! Antimicrobial peptide mechanisms imaged in space and time. Trends Microbiol 24:111–122

    Article  CAS  PubMed  Google Scholar 

  • Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star, photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588:3603–3612

    Article  CAS  PubMed  Google Scholar 

  • Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14:1808–1818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delpech F, Collien Y, Mahou P et al (2018) Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Res 46(20):10757–10770. https://doi.org/10.1093/nar/gky829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson RM, Cubitt AB, Tsien RY et al (1997) On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355–358

    Article  CAS  PubMed  Google Scholar 

  • Donovan BT, Casillas LN, Bury MJ et al (2019) Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J 38(12):e100809. https://doi.org/10.15252/embj.2018100809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endesfelder U (2019) From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem 63:187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Femino AM, Fay FS, Fogarty K et al (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Suárez M, Ting AY (2008) Fluorescent probes for superresolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    Article  CAS  PubMed  Google Scholar 

  • Flynn JD, Haas BL, Biteen JS (2016) Plasmon-enhanced fluorescence from single proteins in living bacteria. J Phys Chem C 120:20512–20517

    Article  CAS  Google Scholar 

  • Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12:9–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Smith RT (2015) Optical hyperspectral imaging in microscopy and spectroscopy—a review of data acquisition. J Biophoton 8:441–456

    Article  Google Scholar 

  • Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  CAS  PubMed  Google Scholar 

  • Gebre AA, Okada H, Kim C et al (2015) Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis. FEMS Yeast Res 15:fov040

    Article  PubMed  CAS  Google Scholar 

  • Ghanegolmohammadi F, Yoshida M, Ohnuki S et al (2017) Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles. Mol Biol Cell 28:3415–3427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haas BL, Matson JS, DiRita VJ et al (2014) Imaging live cells at the nanometer-scale with single-molecule microscopy, obstacles and achievements in experiment optimization for microbiology. Molecules 19:12116–12149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haas BL, Matson JS, DiRita VJ et al (2015) Single-molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membranebound virulence regulator TcpP to the toxT promoter. Mol Microbiol 96:4–13

    Article  CAS  PubMed  Google Scholar 

  • Hagen N, Kudenov MW (2003) Review of snapshot spectral imaging technologies. Opt Eng 52:090901

    Article  Google Scholar 

  • Han R, Li Z, Fan Y, Jiang Y (2013) Recent advances in super-resolution fluorescence imaging and its applications in biology. J Genet Genom 40:583–595

    Article  CAS  Google Scholar 

  • Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heilemann M, Dedecker P, Hofkens J et al (2009) Photoswitches: key molecules for subdiffraction resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3:180–202

    Article  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Tirrell DA (2019) Enzymatic labeling of bacterial proteins for super-resolution imaging in live cells. ACS Cent Sci 5:1911–1919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jessop M et al (2021) Supramolecular assembly of the Escherichia coli LdcI upon acid stress. Proc Natl Acad Sci USA 118(2):e2014383118. https://doi.org/10.1073/pnas.2014383118

    Article  CAS  PubMed  Google Scholar 

  • Johnson I, Spence M (2010) The molecular probes handbook. In: Johnson I, Spence MTZ (eds) A guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, Carlsbad

    Google Scholar 

  • Jonkman J, Brown CM, Cole RW (2014) Quantitative confocal microscopy: beyond a pretty picture. In: Waters JC, Wittmann T (eds) Quantitative imaging in cell biology, vol 123. Academic Press, Burlington, pp 113–134

    Chapter  Google Scholar 

  • Juillerat A, Gronemeyer T, Keppler A et al (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317

    Article  CAS  PubMed  Google Scholar 

  • Kan A (2017) Machine learning applications in cell image analysis. Immunol Cell Biol 95:525–530

    Article  PubMed  Google Scholar 

  • Kentner D, Sourjik V (2010) Use of fluorescence microscopy to study intracellular signaling in bacteria. Annu Rev Microbiol 64:373–390

    Article  CAS  PubMed  Google Scholar 

  • Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  PubMed  Google Scholar 

  • Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kocaoglu O, Carlson EE (2016) Progress and prospects for small-molecule probes of bacterial imaging. Nat Chem Biol 12:472–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lakadamyali M (2014) Super-resolution microscopy, going live and going fast. ChemPhysChem 15:630–636

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Laplante C, Huang F, Tebbs IR et al (2016) Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. Proc Natl Acad Sci USA 113:E5876–E5885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lelek M, Gyparaki MT, Beliu G et al (2021) Single-molecule localization microscopy. Nat Rev Methods Primers 1:39. https://doi.org/10.1038/s43586-021-00038-x

    Article  Google Scholar 

  • Lestini R, Laptenok SP, Kühn J et al (2013) Intracellular dynamics of archaeal FANCM homologue Hef in response to halted DNA replication. Nucleic Acids Res 41(22):10358–10370. https://doi.org/10.1093/nar/gkt816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Neuert G (2019) Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells. Sci Data 6:94

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Schroeder JW, Simmons LA et al (2018) Visualizing bacterial DNA replication and repair with molecular resolution. Curr Opin Microbiol 43:38–45

    Article  PubMed  CAS  Google Scholar 

  • Liew ATF et al (2019) Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2. Elife 8:e45311. https://doi.org/10.7554/eLife.45311

    Article  PubMed Central  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Los GV, Encell LP, McDougall MG et al (2008) HaloTag, a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  • MacDonald L, Baldini G, Storrie B (2015) Does super resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization? Methods Mol Biol 1270:255–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macias-Contreras M, Little KN, Zhu L (2020) Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets. In: Chenoweth DM (ed) Methods in enzymology, vol 638. Academic Press, New York, pp 233–257

    Google Scholar 

  • Martínez-Alvarez L, Deng L, Peng X (2017) Formation of a viral replication focus in Sulfolobus cells infected by the rudivirus sulfolobus islandicus rod-shaped virus 2. J Virol 91(13):e00486-e517. https://doi.org/10.1128/JVI.00486-17

    Article  PubMed Central  PubMed  Google Scholar 

  • McDonald NA, Lind AL, Smith SE et al (2017) Nanoscale architecture of the Schizosaccharomyces pombe contractile ring. Elife 6:e28865. https://doi.org/10.7554/eLife.28865

    Article  PubMed Central  PubMed  Google Scholar 

  • Minoshima M, Kikuchi K (2017) Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem 22:639–652

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Nogami S, Ohya Y (2009) Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141:109–117

    Article  CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus GU (2016) Where do we stand with super-resolution optical microscopy? J Mol Biol 428(2 (Pt A)):308–322

    Article  CAS  PubMed  Google Scholar 

  • Nketia TA, Sailem H, Rohde G et al (2017) Analysis of live cell images: methods, tools and opportunities. Methods 115:65–79

    Article  CAS  PubMed  Google Scholar 

  • Nogami S, Ohya Y, Yvert G (2007) Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet 3:e31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohtani M, Saka A, Sano F et al (2004) Development of image processing program for yeast cell morphology. J Bioinform Computat Biol 1:695–709

    Article  Google Scholar 

  • Ohya Y, Sese J, Yukawa M et al (2005) High-dimensional and large-scale phenotyping of yeast mutants. Proc Natl Acad Sci USA 102:19015–19020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pratt WK (2001) Digital image processing, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Puchkov E (2016a) Image analysis in microbiology: a review. J Comput Commun 4:8–32

    Article  Google Scholar 

  • Puchkov E (2016b) Microfluorimetry of single yeast cells by fluorescence microscopy combined with digital photography and computer image analysis. In: Berhardt LV (ed) Advances in medicine and biology, vol 98. Nova Science Publishers Inc., New York, pp 69–90

    Google Scholar 

  • Puchkov E (2021) Analytical techniques for single-cell studies in microbiology. In: Santra T, Tseng FG (eds) Handbook of single cell technologies. Springer, Singapore, pp 1–32. https://doi.org/10.1007/978-981-10-4857-9_17-3

  • Requejo-Isidro J (2013) Fluorescence nanoscopy. Methods and applications. J Chem Biol 6:97–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Rowland DJ, Tuson HH, Biteen JS (2016) Resolving fast, confined diffusion in bacteria with image correlation spectroscopy. Biophys J 110:2241–2251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderson MJ, Smith I, Parker I et al (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014: pdb.top071795

  • Saurabh S, Perez AM, Comerci CJ et al (2016) Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J Am Chem Soc 138:10398–10401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sbalzarini IF (2016) Seeing is believing, quantifying is convincing, computational image analysis in biology. Adv Anat Embryol Cell Biol 219:1–39

    Article  PubMed  Google Scholar 

  • Schneider JP, Basler M (2016) Shedding light on biology of bacterial cells. Philos Trans R Soc B 371:20150499

    Article  CAS  Google Scholar 

  • Singh MK, Kenney LJ (2021) Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiol Rev 45:fuaa50

    Article  CAS  Google Scholar 

  • Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol. Unit–21.4

  • Solomon CJ, Breckon T (2010) Fundamentals of digital image processing, a practical approach with examples in Matlab. Wiley, New York

    Book  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (2007) Image processing, analysis, and machine vision, 3rd edn. Thomson-Engineering, Toronto

    Google Scholar 

  • Spahn CK, Glaesmann M, Grimm JB et al (2018) A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels. Sci Rep 8:14768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stagge F, Mitronova GY, Belov VN et al (2013) Snap-, CLIP- and Halo-Tag labelling of budding yeast cells. PLoS ONE 8:e78745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stracy M, Kapanidis AN (2017) Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 120:103–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki G, Sawai H, Ohtani M et al (2006) Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology. Curr Genet 49:237–247

    Article  CAS  PubMed  Google Scholar 

  • Sydor AM, Czymmek KJ, Puchner EM et al (2015) Super-resolution microscopy, from single molecules to supramolecular assemblies. Trends Cell Biol 25:730–748

    Article  CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi C, Schmidt BF, Creeger Y et al (2008) Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat Biotechnol 26:235–240

    Article  CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi C, Stanfield RL, Andreko S et al (2013) Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J Mol Biol 425:4595–4613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  • Turkowyd B, Schreiber S, Wörtz J et al (2020) Establishing live-cell single-molecule localization microscopy imaging and single-particle tracking in the archaeon Haloferax volcanii. Front Microbiol 11:583010. https://doi.org/10.3389/fmicb.2020.583010

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuson HH, Biteen JS (2015) Unveiling the inner workings of live bacteria using super-resolution microscopy. Anal Chem 87:42–63

    Article  CAS  PubMed  Google Scholar 

  • Tuson HH, Aliaj A, Brandes ER et al (2016) Addressing the requirements of high-sensitivity single-molecule imaging of low-copy-number proteins in bacteria. ChemPhysChem 17:1435–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uphoff S (2016) Super-resolution microscopy and tracking of DNA-binding proteins in bacterial cells. Methods Mol Biol 1431:221–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace CT, Jessup M, Bernas T et al (2018) Basics of digital microscopy. Curr Protoc Cytom 83:12.2.1-12.2.14

    Google Scholar 

  • Wang W, Li GW, Chen C et al (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wheeler R, Mesnage S, Boneca IG et al (2011) Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 82:1096–10109

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson MHF, Schut F (1998) Digital image analysis of microbes, imaging, morphometry, fluorometry, and motility techniques and applications. Wiley, New York

    Google Scholar 

  • Wollman A, Hedlund EG, Shashkova S et al (2020) Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells. Methods 170:82–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao Z, Carballido-López R (2014) Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annu Rev Microbiol 68:459–476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Puchkov.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests.

Research involving human participants and animals

The article does not contain data obtained in the course of animal and human studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, E.O. Computerized fluorescence microscopy of microbial cells. World J Microbiol Biotechnol 37, 189 (2021). https://doi.org/10.1007/s11274-021-03159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03159-3

Keywords

Navigation