Skip to main content
Log in

Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: processes of reactive oxygen species generation and antioxidant defense responses

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Black rot, caused by Ceratocystis fimbriata, is one of the most destructive disease of sweet potato worldwide, resulting in significant yield losses. However, a proper management system can increase resistance to this disease. Therefore, this study investigated the potential of using tebuconazole (TEB) and trifloxystrobin (TRI) to improve the antioxidant defense systems in sweet potato as well as the inhibitory effects on the growth of and antioxidant activity in C. fimbriata. Four days after inoculating cut surfaces of sweet potato disks with C. fimbriata, disease development was reduced by different concentrations of TEB + TRI. Infection by C. fimbriata increased the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), and the activity of lipoxygenase (LOX) by 138, 152, 73, and 282%, respectively, in sweet potato disks, relative to control. In the sweet potato disks, C. fimbriata reduced the antioxidant enzyme activities as well as the contents of ascorbate (AsA) and reduced glutathione (GSH) by 82 and 91%, respectively, compared with control. However, TEB + TRI reduced the oxidative damage in the C. fimbriata-inoculated sweet potato disks by enhancing the antioxidant defense systems. On the other hand, applying TEB + TRI increased the levels of H2O2, MDA, and EL, and increased the activity of LOX in C. fimbriata, in which the contents of AsA and GSH decreased, and therefore, inhibited the growth of C. fimbriata. These results suggest that TEB + TRI can significantly control black rot disease in sweet potato by inhibiting the growth of C. fimbriata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data may be available upon request.

References

  • Abrashev R, Stoitsova S, Krumova E, Pashova S, Paunova-Krasteva T, Vassile S, Dolashka-Angelova P, Angelova M (2014) Temperature-stress tolerance of the fungal strain Aspergillus niger 26: Physiological and ultrastructural changes. World J Microbiol Biotechnol 30:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Addinsoft (2020) XLSTAT v. 2020.1.1: data analysis and statistics software for Microsoft Excel. Addinsoft, Paris

  • Arfaoui A, El Hadrami A, Daayf F (2018) Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol Biochem 122:121–128

    Article  CAS  PubMed  Google Scholar 

  • Banerjee K, Ligon AP, Spiteller M (2006) Environmental fate of trifloxystrobin in soils of different geographical origins and photolytic degradation in water. J Agric Food Chem 54:9479–9487

    Article  CAS  PubMed  Google Scholar 

  • Bashyal BM, Chand R, Kushwaha C, Sen D, Prasad LC, Joshi AK (2010) Association of melanin content with coniodiogenesis in Bipolaris sorokiniana of barley (Hordeum vulgare L.). World J Microbiol Biotechnol 26:309–316

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chand R, Kumar M, Kushwaha C, Shah K, Joshi AK (2014) Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in Barley. Curr Microbiol 69:202–211

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA (2016) A strobilurin fungicide relieves Bipolaris oryzae-induced oxidative stress in rice. J Phytopathol 164:571–581

    Article  CAS  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Doderer A, Kokkelink I, Van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104. https://doi.org/10.1016/0167-4838(92)90429-H

    Article  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FA (2015) Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology 105:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Ôba K, Uritani I (1981) Ipomeamarone 15-hydroxylase from cut-injured and Ceratocystis firnbriata-infected sweet potato root tissues. Agric Biol Chem 45:1911–1913

    CAS  Google Scholar 

  • Gadd GM (1982) Effects of media composition and light on colony differentiation and melanin synthesis in Microdochium bolleyi. Trans Br Mycol Soc 78:115–122

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394

    Article  CAS  Google Scholar 

  • Gong Z, Li D, Liu C, Cheng A, Wang W (2015) Partial purification and characterization of polyphenol oxidase and peroxidase from chestnut kernel. LWT Food Sci Technol 60:1095–1099

    Article  CAS  Google Scholar 

  • Guirao-Abad JP, Sánchez-Fresneda R, Alburquerque B, Hernández JA, Argüelles JC (2017) ROS formation is a differential contributory factor to the fungicidal action of amphotericin B and micafungin in Candida albicans. Int J Med Microbiol 307:241–248

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene dependent plant defense responses. Plant Cell 8:1773–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607

    Article  Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Mohsin SM, Bhuyan MHMB, Parvin K, Hawrylak-Nowak B, Fujita M (2019a) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28:261–276

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019b) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384. https://doi.org/10.3390/antiox8090384

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed Central  Google Scholar 

  • Hayashi S, Yoshioka M, Matsui T, Kojima K, Kato M, Kanamaru K, Kobayashi T (2014) Control of reactive oxygen species (ROS) production through histidine kinases I Aspergillus nidulans under different growth conditions. FEBS Open Bio 4:90–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Hébrard C, Deville MA, Cordelier S, Dorey S, Aziz A, Crouzet J (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19:18033–18056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaneko I, Ishii H (2009) Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale. J Gen Plant Pathol 75:388–398

    Article  CAS  Google Scholar 

  • Kumar M, Chand R, Dubey RS, Shah K (2015) Effect of tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley. World J Microbiol Biotechnol 31:23–35

    Article  CAS  PubMed  Google Scholar 

  • Kunova A, Pizzatti C, Cortesi P (2013) Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest Manag Sci 69:278–284

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechno S, Zamski E, Tel-Or E (1997) Salt stress-induced responses in cucumber plants. J Plant Physiol 150:206–211

    Article  CAS  Google Scholar 

  • Liu L, Xu P, Zeng G, Huang D, Zhao M, Lai C, Chen M, Li N, Huang C, Wang C, Cheng M (2014) Inherent antioxidant activity and high yield production of antioxidants in Phanerochaete chrysosporium. Biochem Eng J 90:245–254

    Article  CAS  Google Scholar 

  • Liu N, Dong F, Xu J, Liu X, Chen Z, Tao Y, Pan X, Chen X, Zheng Y (2015) Stereoselective determination of tebuconazole in water and zebrafish by supercritical fluid chromatography tandem mass spectrometry. J Agric Food Chem 63:6297–6303

    Article  CAS  PubMed  Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe Interact 20:697–706

    Article  CAS  PubMed  Google Scholar 

  • Mohsin SM, Islam MR, Ahmmed ANF, Nisha HAC, Hasanuzzaman M (2016) Cultural, morphological and pathogenic characterization of Alternaria porri causing purple blotch of onion. Not Bot Horti Agrobot Cluj Napoca 44:222–227

    Article  CAS  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Bhuyan MHMB, Parvin K, Fujita M (2019) Exogenous tebuconazole and trifloxystrobin regulates reactive oxygen species metabolism toward mitigating salt-induced damages in cucumber seedling. Plants 8:428. https://doi.org/10.3390/plants8100428

    Article  CAS  PubMed Central  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Parvin K, Fujita M (2020a) Pretreatment of wheat (Triticum aestivum L.) seedlings with 2, 4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. Plant Physiol Biochem 152:221–231

    Article  CAS  PubMed  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Nahar K, Hossain MS, Bhuyan MHMB, Parvin K, Fujita M (2020b) Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L. Physiol Mol Biol Plants 26:1139–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Parvin K, Hossain MS, Fujita M (2021) Protective role of tebuconazole and trifloxystrobin in wheat (Triticum aestivum L.) under cadmium stress via enhancement of antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 27:1043–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, Otani M, Hirai M, Nakamura K, Imaeda T (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31:987–997

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    Article  CAS  PubMed  Google Scholar 

  • Paul NC, Nam SS, Kachroo A, Kim YH, Yang JW (2018) Characterization and pathogenicity of sweet potato (Ipomoea batatas) black rot caused by Ceratocystis fimbriata in Korea. Eur J Plant Pathol 152:833–840

    Article  Google Scholar 

  • Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254:771–783

    Article  CAS  PubMed  Google Scholar 

  • Pompeu GB, Pietrobon VC, Andreote CC, Ferreira LF, Aguiar M, Sartori SB, Cruz SH, Monteiro RT (2018) Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 22:255–264

    Article  PubMed  CAS  Google Scholar 

  • Reddy PP (2015) Sweet potato: Ipomoea batatas. In: Reddy PP (ed) Plant protection in tropical root and tuber crops. Springer, New Delhi, pp 83–141

    Chapter  Google Scholar 

  • Shimizu N, Hosogi N, Hyon GS, Jiang S, Inoue K, Park P (2006) Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype. J Gen Plant Pathol 72:6–15

    Article  CAS  Google Scholar 

  • Wang CJ, Wang YZ, Chu ZH, Wang PS, Liu BY, Li BY, Yu XL, Luan BH (2020) Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.). J Plant Physiol 253:153260. https://doi.org/10.1016/j.jplph.2020.153260

    Article  CAS  PubMed  Google Scholar 

  • Xing K, Li TJ, Liu YF, Zhang J, Zhang Y, Shen XQ, Li XY, Miao XM, Feng ZZ, Peng X, Li ZY (2018) Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chem 268:188–195

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Tian S (2008) Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 49:379–385

    Article  CAS  Google Scholar 

  • Yang Y, Fan F, Zhuo R, Ma F, Gong Y, Wan X, Jiang M, Zhang X (2012) Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78:5845–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogenperoxide-induces chilling tolerance in mungbeans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Liu M, Pan S, Pan C, Li Y, Tian J (2018) Perillaldehyde controls postharvest black rot caused by Ceratocystis fimbriata in sweet potatoes. Front Microbiol 9:1102. https://doi.org/10.3389/fmicb.2018.01102

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li T, Liu Y, Li X, Zhang C, Feng Z, Peng X, Li Z, Qin S, Xing K (2019) Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J Agric Food Chem 67:3702–3710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Thanks to Dennis Murphy, Ehime University, Japan for English language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SMM designed, conceived, and executed the experiment and drafted the manuscript; MH designed the experiment, analyzed the data, and edited the manuscript; KP actively participated in the experiment; MM edited and reviewed the manuscript; MF supervised the experiment, and edited and reviewed the manuscript.

Corresponding author

Correspondence to Masayuki Fujita.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors have given consent to publish.

Plant reproducibility

The plant materials can be reproduced under controlled or field conditions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, S.M., Hasanuzzaman, M., Parvin, K. et al. Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: processes of reactive oxygen species generation and antioxidant defense responses. World J Microbiol Biotechnol 37, 148 (2021). https://doi.org/10.1007/s11274-021-03111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03111-5

Keywords

Navigation