Skip to main content

Advertisement

Log in

Direct detection of methicillin-resistant in Staphylococcus spp. in positive blood culture by isothermal recombinase polymerase amplification combined with lateral flow dipstick assay

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methicillin-resistant staphylococci (MRS) are important antimicrobial-resistant pathogens in sepsis. Conventional blood cultures take 24–72 h. The polymerase chain reaction (PCR)-based methods give faster results (2–3 h) but need expensive thermal cyclers. We therefore developed an isothermal recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) assay for rapid detection of MRS in spiked blood culture samples. Fifty-six clinical isolates including 38 mecA-carrying staphylococci and 18 non-mecA-carrying organisms as confirmed by PCR methods were studied. RPA primer set and probe specific for mecA gene (encoding penicillin-binding protein 2a) were designed. RPA reaction was carried out under isothermal condition (45 °C) within 20 min and read by LFD in 5 min. The RPA-LFD provided 92.1% (35/38) sensitivity for identifying MRS in positive blood culture samples, and no cross-amplification was found (100% specificity). This test failed to detect three mecA-carrying S.sciuri isolates. The detection limits of RPA-LFD method for identifying MRS were equal to those of PCR method. The RPA-LFD is simple, fast, and user-friendly. This method could detect the mecA gene directly from the positive blood culture samples without requirement for special equipment. This method would be useful for appropriate antibiotic therapy and infection control, particularly in a low-resource setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed SA, van de Sande WW, Desnos-Ollivier M, Fahal AH, Mhmoud NA, de Hoog GS (2015) Application of isothermal amplification techniques for identification of Madurella mycetomatis, the prevalent agent of human Mycetoma. J Clin Microbiol 53:3280–3285

    CAS  Google Scholar 

  • Cao Y, Zheng K, Jiang J, Wu J, Shi F, Song X, Jiang Y (2018) A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I. Food Chem 266:73–78

    CAS  Google Scholar 

  • Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62:947–958

    CAS  Google Scholar 

  • Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, Jousset AB, Naas T (2018) MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother 73:2352–2359

    CAS  Google Scholar 

  • Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol 50:2234–2238

    CAS  Google Scholar 

  • Fishovitz J, Hermoso JA, Chang M, Mobashery S (2014) Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 66:572–577

    CAS  Google Scholar 

  • Hogan JJ, Kaplan SK (2015) Method and kit for identifying antibiotic-resistant microorganisms. US 9109261

  • Hu J, Huang R, Sun Y, Wei X, Wang Y, Jiang C, Geng Y, Sun X, Jing J, Gao H, Wang Z, Dong C (2019) Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks. J Microbiol Methods 158:25–32

    CAS  Google Scholar 

  • Hu J, Wang Y, Su H, Ding H, Sun X, Gao H, Geng Y, Wang Z (2020) Rapid analysis of Escherichia coli O157:H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes. Mol Cell Probes 50:101501

    CAS  Google Scholar 

  • Kapoor R, Srivastava N, Kumar S, Saritha RK, Sharma SK, Jain RK, Baranwal VK (2017) Development of a recombinase polymerase amplification assay for the diagnosis of banana bunchy top virus in different banana cultivars. Arch Virol 162:2791–2796

    CAS  Google Scholar 

  • Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta 181:1715–1723

    CAS  Google Scholar 

  • Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, HiramatsuK (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274

    CAS  Google Scholar 

  • Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020–e00018

    CAS  Google Scholar 

  • Liu HB, Zang YX, Du XJ, Li P, Wang S (2017) Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. J Dairy Sci 100:7016–7025

    CAS  Google Scholar 

  • Liu Y, Lei T, Liu Z, Kuang Y, Lyu J, Wang Q (2016) A Novel technique to detect EGFR mutations in lung cancer. Int J Mol Sci 17:E792

    Google Scholar 

  • Londoño MA, Harmon CL, Polston JE (2016) Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J 13:48

    Google Scholar 

  • Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893

    CAS  Google Scholar 

  • Ma Q, Liu H, Ye F, Xiang G, Shan W, Xing W (2017) Rapid and visual detection of Mycobacterium tuberculosis complex using recombinase polymerase amplification combined with lateral flow strips. Mol Cell Probes 36:43–49

    CAS  Google Scholar 

  • Maes N, Magdalena J, Rottiers S, De Gheldre Y, Struelens MJ (2002) Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative Staphylococci and determine methicillin resistance from blood cultures. J Clin Microbiol 40:1514–1517

    CAS  Google Scholar 

  • Mayr FB, Yende S, Angus DC (2014) Epidemiology of severe sepsis. Virulence 5:4–11

    Google Scholar 

  • Mohanasoundaram KM, Lalitha MK (2008) Comparison of phenotypic versus genotypic methods in the detection of methicillin resistance in Staphylococcus aureus. Indian J Med Res 127:78–84

    CAS  Google Scholar 

  • Moore MD, Jaykus LA (2017) Recombinase polymerase amplification: a promising point-of-care detection method for enteric viruses. Future Virol 12:421–429

    CAS  Google Scholar 

  • Nair G, Rebolledo M, White AC Jr, Crannell Z, Richards-Kortum RR, Pinilla AE, Ramírez JD, López MC, Castellanos-Gonzalez A (2015) Detection of Entamoeba histolytica by recombinase polymerase amplification. Am J Trop Med Hyg 93:591–595

    CAS  Google Scholar 

  • Nawattanapaiboon K, Prombun P, Santanirand P, Vongsakulyanon A, SrikhirinT, Sutapun B, Kiatpathomchai W (2016) Hemoculture and direct sputum detection of mecA-mediated methicillin-resistant Staphylococcus aureus by loop-mediated isothermal amplification in combination with a lateral-flow dipstick. J Clin Lab Anal 30:760–767

    CAS  Google Scholar 

  • Nijjar CK, Smith MH, Eltringham IJ (2014) Adjunctive mecA PCR for routine detection of methicillin susceptibility in clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 52:1678–1681

    Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Google Scholar 

  • Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García MV, Gómez MJ, Del Arco A, Muñoz A, Sánchez-Porto A, Torres-Tortosa M, Martín-Aspas A, Arroyo A, García-Figueras C, Acosta F, Corzo JE, León-Ruiz L, Escobar-Lara T, Rodríguez-BañoJ, SAEI/SAMPAC Bacteremia Group (2012) Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrob Agents Chemother 56:472–478

    CAS  Google Scholar 

  • Richards SM, Mitchell KJ, Tobler R, Cooper A (2019) Recombinase polymerase amplification (RPA) versus PCR for ancient DNA library amplification. PeerJ Preprints 7:e27544v1. https://doi.org/10.7287/peerj.preprints.27544v1

    Article  Google Scholar 

  • Rocchetti TT, Martins KB, Martins PYF, Oliveira RA, MondelliAL, Fortaleza CMCB, Cunha MLRSD (2018) Detection of the mecAgene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Braz J Infect Dis 22:99–105

    Google Scholar 

  • Rosser A, Rollinson D, Forrest M, Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 8:446

    CAS  Google Scholar 

  • Shittu A, Lin J, Morrison D, Kolawole D (2004) Isolation and molecular characterization of multi resistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J Med Microbiol 53:51–55

    CAS  Google Scholar 

  • Singpanomchai N, Akeda Y, Tomono K, Tamaru A, Santanirand P, Ratthawongjirakul P (2019) Naked eye detection of the Mycobacterium tuberculosis complex by recombinase polymerase amplification-SYBR green I assay. J Clin Lab Anal 33:e22655

    Google Scholar 

  • Srisrattakarn A, Lulitanond A, Wilailuckana C, Charoensri N, Wonglakorn L, Saenjamla P, Chaimanee P, Daduang J, Chanawong A (2017) Rapid and simple identification of carbapenemase genes, blaNDM, blaOXA–48, blaVIM, blaIMP–14 and blaKPC groups, in Gram-negative bacilli by in-house loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J Microbiol Biotechnol 33:130

    Google Scholar 

  • Tenover FC, Jones RN, Swenson JM, Zimmer B, McAllister S, Jorgensen JH (1999) Methods for improved detection of oxacillin resistance in coagulase-negative staphylococci: results of a multicenter study. J Clin Microbiol 37:4051–4058

    CAS  Google Scholar 

  • Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection. J Virol Methods 243:98–104

    CAS  Google Scholar 

  • Vazquez-Guillamet C, Scolari M, Zilberberg MD, Shorr AF, Micek ST, Kollef M (2014) Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock. Crit Care Med 42:2342–2349

    CAS  Google Scholar 

  • Wang B, Jessamine P, Desjardins M, Toye B, Ramotar K (2013) Direct mecA polymerase chain reaction testing of blood culture bottles growing Gram-positive cocci and the clinical potential in optimizing antibiotic therapy for staphylococcal bacteremia. Diagn Microbiol Infect Dis 75:37–41

    CAS  Google Scholar 

  • Wang L, Zhao P, Si X, Li J, Dai X, Zhang K, Gao S, Dong J (2020) Rapid and specific detection of Listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer–dimers. Front Microbiol 10:2959

    Google Scholar 

  • Wang MY, Geng JL, Chen YJ, Song Y, Sun M, Liu HZ, Hu CJ (2017a) Direct detection of mecA, blaSHV, blaCTX–M, blaTEM and blaOXA genes from positive blood culture bottles by multiplex-touchdown PCR assay. Lett Appl Microbiol 64:138–143

    CAS  Google Scholar 

  • Wang R, Zhang F, Wang L, Qian W, Qian C, Wu J, Ying Y (2017b) Instant, visual, and instrument-free method for on-site screening of GTS 40-3-2 soybean based on body-heat triggered recombinase polymerase amplification. Anal Chem 89:4413–4418

    CAS  Google Scholar 

  • Xu J, Wang X, Yang L, Kan B, Lu X (2018) Rapid detection of mcr-1 by recombinase polymerase amplification. J Med Microbiol 67:1682–1688

    CAS  Google Scholar 

  • Yamazumi T, Furuta I, Diekema DJ, Pfaller MA, Jones RN (2001) Comparison of the Vitek gram-positive susceptibility 106 card, the MRSA-Screen latex agglutination test, and mecA analysis for detecting oxacillin resistance in a geographically diverse collection of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 39:3633–3636

    CAS  Google Scholar 

  • Yang CJ, Chung YC, Chen TC, Chang HL, Tsai YM, Huang MS, Chen YH, Lu PL (2013) The impact of inappropriate antibiotics on bacteremia patients in a community hospital in Taiwan: an emphasis on the impact of referral information for cases from a hospital affiliated nursing home. BMC Infect Dis 13:500

    CAS  Google Scholar 

  • Zasada AA, Zacharczuk K, Formińska K, Wiatrzyk A, Ziółkowski R, Malinowska E (2018) Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents. Anal Biochem 560:60–66

    CAS  Google Scholar 

  • Zhang S, Ravelonandro M, Russell P, McOwen N, Briard P, Bohannon S, Vrient A (2014) Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification. J Virol Methods 207:114–120

    CAS  Google Scholar 

  • Zheng X, Kolbert CP, Varga-Delmore P, Arruda J, Lewis M, Kolberg J, Cockerill FR, Persing DH (1999) Direct mecA detection from blood culture bottles by branched-DNA signal amplification. J Clin Microbiol 37:4192–4193

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a scholarship under the Post-Doctoral Training Program from Khon Kaen University, Thailand (PD2562-09); a research grant from Khon Kaen University (Project Number I62-00-19-03); and the Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Thailand. We are grateful to Firmer Co., Ltd for supporting pre-incubated aerobic culture bottles and RENDER automated blood culture system; and to staff of Clinical Microbiology Unit, Srinagarind Hospital for collecting the clinical isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aroonlug Lulitanond.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Khon Kaen University (project number HE611605).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srisrattakarn, A., Tippayawat, P., Chanawong, A. et al. Direct detection of methicillin-resistant in Staphylococcus spp. in positive blood culture by isothermal recombinase polymerase amplification combined with lateral flow dipstick assay. World J Microbiol Biotechnol 36, 162 (2020). https://doi.org/10.1007/s11274-020-02938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02938-8

Keywords

Navigation