Skip to main content
Log in

Biological leaching of rare earth elements

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The distinctive physico-chemical features of rare earth elements (REEs) have led to an increase in demand by the global market due to their multiple uses in industrial, medical and agricultural implementations. However, the scarcity of REEs and the harsh eco-unfriendly leaching processes from primary sources beside obliviousness to their recycling from secondary sources, together with the geopolitical situation, have created the need to develop a more sustainable mining strategy. Therefore, there is a growing interest in bio-hydrometallurgy, which may contribute to the scavenging of these strategic elements from low-grade resources in an environmentally friendly and economically feasible way as with copper and gold. Several prokaryotes and eukaryotes show the ability to leach REEs, however, the success in employing these microorganisms or their products in this process relays on several biotic and abiotic factors. This review focuses on the differences made by microorganisms in REEs leaching and fundamentally explains microbes-REEs interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S (2014) Social and environmental impact of the rare earth industries. Resources 3:123–134

    Google Scholar 

  • Amin MM, El-Aassy I, El-Feky M, Sallam A, El-Sayed E, Nada AA, Harpy NM (2014) Fungal leaching of rare earth elements from lower carboniferous carbonaceous shales, southwestern Sinai, Egypt. Rom J Biophys 24:25–41

    Google Scholar 

  • Antonick PJ et al (2019) Bio-and mineral acid leaching of rare earth elements from synthetic phosphogypsum. J Chem Thermodyn 132:491–496

    CAS  Google Scholar 

  • Barnett M, Palumbo-Roe B, Gregory S (2018) Comparison of heterotrophic bioleaching and ammonium sulfate ion exchange leaching of rare earth elements from a madagascan ion-adsorption clay. Minerals 8:236

    Google Scholar 

  • Becker S, Dietze H, Bullmann M, Iske U (1986) Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon. Fresenius' Zeitschrift fuer Anal Chem 324:37–42

    CAS  Google Scholar 

  • Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956

    CAS  PubMed  Google Scholar 

  • Bian X, Yin SH, Zhang FY, Wu WY, Tu GF (2011) Study on leaching process of activation bastnaesite by HCl solution. Adv Mater Res 233:1406–1410

    Google Scholar 

  • Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    CAS  Google Scholar 

  • Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol 4:93–97

    CAS  Google Scholar 

  • Brandl H, Barmettler F, Castelberg C, Fabbri C (2016) Microbial mobilization of rare earth elements (REE) from mineral solids: a mini review. AIMS Microbiol 3:190–204

    Google Scholar 

  • Brisson VL, Zhuang WQ, Alvarez-Cohen L (2016) Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng 113:339–348

    CAS  PubMed  Google Scholar 

  • Bünzli J-CG, Eliseeva SV (2010) Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J Rare Earths 28:824–842

    Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements 8:333–340

    CAS  Google Scholar 

  • Chistoserdova L (2016) Lanthanides: new life metals? World J Microb Biot 32:138

    Google Scholar 

  • Christenson EA, Schijf J (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim et Cosmochim Ac 75:7047–7062

    CAS  Google Scholar 

  • Čížková M et al (2019) Bio-mining of lanthanides from red mud by green microalgae. Molecules 24:1356

    PubMed Central  Google Scholar 

  • Corbett MK, Eksteen JJ, Niu XZ, Watkin EL (2017) Incorporation of indigenous microorganisms increases leaching rates of rare earth elements from Western Australian monazite. Diffus Defect Data Solid State Data Pt. B. Solid State Phenom 262:294–298

    Google Scholar 

  • d'Aquino L et al (2009) Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol Biochem 41:2406–2413

    CAS  Google Scholar 

  • Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arab J of Chem 9:S795–S805

    CAS  Google Scholar 

  • Emmanuel EC, Ananthi T, Anandkumar B, Maruthamuthu S (2012) Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India. J Biosci 37:25–31

    PubMed  Google Scholar 

  • Fathollahzadeh H, Hackett MJ, Khaleque HN, Eksteen JJ, Kaksonen AH, Watkin EL (2018) Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresour Technol Rep 3:109–118

    Google Scholar 

  • Fathollahzadeh H, Eksteen JJ, Kaksonen AH, Watkin EL (2019a) Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. App Microbiol Biotechnol 103:1043–1057

    CAS  Google Scholar 

  • Fathollahzadeh H, Khaleque HN, Eksteen J, Kaksonen AH, Watkin EL (2019b) Effect of glycine on bioleaching of rare earth elements from Western Australian monazite by heterotrophic and autotrophic microorganisms. Hydrometallurgy 189:105137

    CAS  Google Scholar 

  • Fitriyanto NA et al (2011) Ce3+-induced exopolysaccharide production by Bradyrhizobium sp. MAFF211645. J Biosci Bioeng 111:146–152

    CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  • Good NM, Vu HN, Suriano CJ, Subuyuj GA, Skovran E, Martinez-Gomez NC (2016) Pyrroloquinoline quinone ethanol dehydrogenase in Methylobacterium extorquens AM1 extends lanthanide-dependent metabolism to multicarbon substrates. J Bacteriol 198:3109–3118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Zhao R, Zhao W, Fu R, Guo J, Bi N, Zhang J (2013a) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl Soil Ecol 72:85–92

    Google Scholar 

  • Guo W, Zhao R, Zhao W, Fu R, Guo J, Zhang J (2013b) Effects of arbuscular mycorrhizal fungi on the growth and rare earth elements uptake of soybean grown in rare earth mine tailings. Huanjing Kexue 34:1915–1921

    CAS  PubMed  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    CAS  PubMed  Google Scholar 

  • Hassanien W, Desouky O, Hussien S (2013) Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol 11:809–823

    Google Scholar 

  • Haque N, Hughes A, Lim S, Vernon C (2014) Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3:614–635

    Google Scholar 

  • Horiike T, Yamashita M (2015) A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol 81:3062–3068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfe S, Flemming K, Lehmann F, Möckel R, Kutschke S, Pollmann KJWM (2017) Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manag 62:211–221

    CAS  PubMed  Google Scholar 

  • Hopfe S, Konsulke S, Barthen R, Lehmann F, Kutschke S, Pollmann K (2018) Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder. Waste Manag 79:554–563

    CAS  PubMed  Google Scholar 

  • Ichihara M, Harding A (1995) Human rights, the environment and radioactive waste: a study of the Asian rare earth case in Malaysia. Rev Eur Comp Int'l Envtl L 4:1

    Google Scholar 

  • Jacinto J, Henriques B, Duarte A, Vale C, Pereira E (2018) Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis. J Hazard Mater 344:531–538

    CAS  PubMed  Google Scholar 

  • Jin H et al (2019) Sustainable bioleaching of rare earth elements from industrial waste materials using agricultural wastes. ACS Sustain Chem Eng 7:15311–15319

    CAS  Google Scholar 

  • Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources. J Alloys Compd 408:1339–1343

    Google Scholar 

  • Karavaiko G, Kareva A, Avakian Z, Zakharova V, Korenevsky AJBL (1996) Biosorption of scandium and yttrium from solutions. Biotechnol Lett 18:1291–1296

    CAS  Google Scholar 

  • Kim J-A et al (2011) Leaching of rare-earth elements and their adsorption by using blue-green algae. Mater Trans 52:1799–1806

    CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 108:11–32

    CAS  Google Scholar 

  • Krishnamurthy N, Gupta CK (2004) Extractive metallurgy of rare earths. CRC Press, Boca Raton

    Google Scholar 

  • Kuzmin VI, Pashkov GL, Lomaev VG, Voskresenskaya EN, Kuzmina VN (2012) Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy 129:1–6

    Google Scholar 

  • Migaszewski ZM, Gałuszka A (2015) The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review. Crit Rev Environ Sci Technol 45:429–471

    CAS  Google Scholar 

  • Minoda A et al (2015) Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl Microbiol Biotechnol 99:1513–1519

    CAS  PubMed  Google Scholar 

  • Osman Y, Gebreil A, Mowafy AM, Anan TI, Hamed SM (2019) Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J Microb Biot 35:93

    Google Scholar 

  • Ozaki T, Suzuki Y, Nankawa T, Yoshida T, Ohnuki T, Kimura T, Francis AJ (2006) Interactions of rare earth elements with bacteria and organic ligands. J Alloys Compd 408:1334–1338

    Google Scholar 

  • Peelman S, Sun ZH, Sietsma J, Yang Y (2016) Leaching of rare earth elements: review of past and present technologies. In: De Lima IB, Filho WL (eds) Rare earths industry. Elsevier, Amsterdam, pp 319–334

    Google Scholar 

  • Pietrelli L, Bellomo B, Fontana D, Montereali MJH (2002) Rare earths recovery from NiMH spent batteries. Hydrometallurgy 66:135–139

    CAS  Google Scholar 

  • Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. J Bioresour Technol 136:16–23

    CAS  Google Scholar 

  • Qu Y et al (2015) Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Miner Eng 81:1–4

    CAS  Google Scholar 

  • Qu Y, Li H, Wang X, Tian W, Shi B, Yao M, Zhang Y (2019) Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp. Minerals 9:67

    CAS  Google Scholar 

  • Reed DW, Fujita Y, Daubaras DL, Jiao Y, Thompson VS (2016) Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 166:34–40

    CAS  Google Scholar 

  • Rodrigues LEOC, Mansur MBJ (2010) Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries. J Power Sources 195:3735–3741

    CAS  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    CAS  PubMed  Google Scholar 

  • Shin D, Kim J, Kim B-s, Jeong J, Lee J-c (2015) Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 5:189–202

    CAS  Google Scholar 

  • Skovran E, Martinez-Gomez NC (2015) Just add lanthanides. Science 348:862–863

    CAS  PubMed  Google Scholar 

  • Thompson VS et al (2017) Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustain Chem Eng 6:1602–1609

    Google Scholar 

  • Tkaczyk A, Bartl A, Amato A, Lapkovskis V, Petranikova M (2018) Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. J Phys D Appl Phys 51:203001

    Google Scholar 

  • Tyler GJP (2004) Rare earth elements in soil and plant systems-A review. Plant Soil 267:191–206

    CAS  Google Scholar 

  • Van Der Ende BM, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095

    PubMed  Google Scholar 

  • Wang M, Tan Q, Chiang JF, Li J (2017) Recovery of rare and precious metals from urban mines—a review. Front Env Sci Eng 11(5):1

    Google Scholar 

  • Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R (2015) The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals 5:397–451

    CAS  Google Scholar 

  • Zhang L, Dong H, Liu Y, Bian L, Wang X, Zhou Z, Huang Y (2018) Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem Geol 483:544–557

    CAS  Google Scholar 

  • Zhaogang L, Mei L, Yanhong H, Mitang W, Zhenxue S (2008) Preparation of large particle rare earth oxides by precipitation with oxalic acid. J Rare Earth 26:158–162

    Google Scholar 

  • Zhuang W-Q, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 33:327–333

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr M. Mowafy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowafy, A.M. Biological leaching of rare earth elements. World J Microbiol Biotechnol 36, 61 (2020). https://doi.org/10.1007/s11274-020-02838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02838-x

Keywords

Navigation