Skip to main content
Log in

High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microalgal genus of Nannochloropsis is considered one of the most promising organisms for the production of biofuels due to their high lipid content. Transformation systems for marine Nannochloropsis species have been established in the recent decade, however, genetic manipulation of Nannochloropsis limnetica, the only known freshwater species in this genus, is not yet available. Based on established marine Nannochloropsis species electrotransformation protocol, nuclear genetic transformation was established in N. limnetica, meanwhile the appropriate antibiotic selection concentration and electric field strength of electroporation were determined. For the selection of transformants in N. limnetica on plates, 0.07 μg mL−1 of zeocin or 5 μg mL−1 of hygromycin B was proved sufficient, and the transformation efficiency was < 2 × 10−8 with a single pulse ranging from 2200 to 2600 V using 2-mm electroporation cuvettes. Pretreatment of N. limnetica with 10 mM lithium acetate and 3 mM dithiothreitol before electroporation increased transformation efficiency hundreds of times, and the highest transformation efficiency of 10–11 × 10−6 was obtained with an electric field strength of 12,000 V/cm. Our results help to expand the biotechnological applications of this freshwater species and provide means for successful electrotransformation of other microalgae as well.

Graphic abstract

High-efficiency transformation of freshwater Nannochloropsis pretreatment of N. limnetica with 10 mM lithium acetate and 3 mM dithiothreitol before electroporation increased transformation efficiency hundreds of times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen RA, Brett RW, Potter D, Sexton JP (1998) Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis. Protist 149:61–74

    Article  CAS  Google Scholar 

  • Baudelet P-H, Ricochon G, Linder M, Muniglia L (2017) A new insight into cell walls of Chlorophyta. Algal Res 25:333–371

    Article  Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  CAS  Google Scholar 

  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251

    Article  CAS  Google Scholar 

  • Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54:545–552

    Article  CAS  Google Scholar 

  • Fietz S, Bleiß W, Hepperle D, Koppitz H, Krienitz L, Nicklisch A (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake Baikal. J Phycol 41(4):780–790

    Article  Google Scholar 

  • Freire I, Cortina-Burgueño A, Grille P, Arizcun MA, Abellán E, Segura M, Sousa FW, Otero A (2016) Nannochloropsis limnetica: A freshwater microalga for marine aquaculture. Aquaculture 459:124–130

    Article  Google Scholar 

  • Gbadamosi OK, Lupatsch I (2018) Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal Res 33:48–54

    Article  Google Scholar 

  • Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O (2017) Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 249:10–15

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  Google Scholar 

  • Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108(52):21265–21269

    Article  CAS  Google Scholar 

  • Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36(3):204–210

    Article  CAS  Google Scholar 

  • Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39(3):219–227

    Article  Google Scholar 

  • Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78(5):812–817

    Article  CAS  Google Scholar 

  • Ma Y, Wang Z, Yu C, Yin Y, Zhou G (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresource Technol 167:503–509

    Article  CAS  Google Scholar 

  • Noda J, Mühlroth A, Bučinská L, Dean J, Bones AM, Sobotka R (2017) Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: antibiotic resistance and protoplast production. J Appl Phycol 29(2):853–863

    Article  CAS  Google Scholar 

  • Papagianni M, Avramidis N, Filioussis G (2007) High efficiency electrotransformation of Lactococcus lactis spp lactis cells pretreated with lithium acetate and dithiothreitol. BMC Biotechnol 7:15

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  Google Scholar 

  • Rodolfi L (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406(1–2):23–35

    Article  CAS  Google Scholar 

  • Soria-Verdugo A, Goos E, García-Hernando N, Riedel U (2018) Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the Distributed Activation Energy Model. Algal Res 32:11–29

    Article  Google Scholar 

  • Suchodolskis A, Feiza V, Stirke A, Timonina A, Ramanaviciene A, Ramanavicius A (2011) Elastic properties of chemically modified baker's yeast cells studied by AFM. Surf Interface Anal 43(13):1636–1640

    Article  CAS  Google Scholar 

  • Sukenik A (1998) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis sp. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 41–56

    Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya Simpson JP, TerBush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the Heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8(11):e1003064

    Article  CAS  Google Scholar 

  • Wang D, Ning K, Li J, Hu J, Han D, Wang H, Zeng X, Jing X, Zhou Q, Su X, Chang X, Wang A, Wang W, Jia J, Wei L, Xin Y, Qiao Y, Huang R, Chen J, Han B, Yoon K, Hill RT, Zohar Y, Chen F, Hu Q, Xu J (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10(1):e1004094

    Article  Google Scholar 

  • Wu S, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36(1):152–154

    Article  CAS  Google Scholar 

  • Zhang C, Hu H (2014) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics 16:63–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFD0901500) and National Natural Science Foundation of China (Grant No. 91751117).

Author information

Authors and Affiliations

Authors

Contributions

HH, taking responsibility for the integrity of the work as a whole, designed the research, analyzed the data and wrote the manuscript. YC performed the experiments and analyze the data. All authors agree on the authorship and submission of the manuscript for peer review.

Corresponding author

Correspondence to Hanhua Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

No informed consent, human or animal rights applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hu, H. High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica. World J Microbiol Biotechnol 35, 119 (2019). https://doi.org/10.1007/s11274-019-2695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2695-9

Keywords

Navigation