Skip to main content
Log in

Oxidative damage induced by H2O2 reveals SOS adaptive transcriptional response of Dietzia cinnamea strain P4

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oxidative stress response of the highly resistant actinomycete Dietzia cinnamea P4 after treatment with hydrogen peroxide (H2O2) was assessed in order to depict the possible mechanisms underlying its intrinsic high resistance to DNA damaging agents. We used transcriptional profiling to monitor the magnitude and kinetics of changes in the mRNA levels after exposure to different concentrations of H2O2 at 10 min and 1 h following the addition of the stressor. Catalase and superoxide dismutase genes were induced in different ways, according to the condition applied. Moreover, alkyl hydroperoxide reductase ahpCF, thiol peroxidase, thioredoxin and glutathione genes were upregulated in the presence of H2O2. Expression of peroxidase genes was not detected during the experiment. Overall results point to an actinomycete strain endowed with a set of enzymatic defenses against oxidative stress and with the main genes belonging to a functional SOS system (lexA, recA, uvrD), including suppression of lexA repressor, concomitantly to recA and uvrD gene upregulation upon H2O2 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amo T, Atomi H, Imanaka T (2002) Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J Bacteriol 184(12):3305–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenas FA, Díaz WA, Leal CA, Pérez-Donoso JM, Imlay JA, Vásquez CC (2010) The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem Biophys Res Commun 398(4):690–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidaud P, Hébert L, Barbey C, Appourchaux AC, Torelli R, Sanguinetti M, Laugier C, Petry S (2012) Rhodococcus equi’s extreme resistance to hydrogen peroxide is mainly conferred by one of its four catalase genes. PLoS ONE 7(8):e42396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae HZ, Rhee SG (1994) A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors 4(3–4):177–180

    CAS  PubMed  Google Scholar 

  • Evans FF, Rosado AS, Casella R, Sebastian GV, Machado PLOA, Holmström C, Kjelleberg S, van Elsas JD, Seldin L (2004) Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 49(2):295–305

    Article  CAS  PubMed  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55(4):561–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs RP, Fujii S, Wagner J (2004) Properties and functions of Escherichia coli: Pol IV and Pol V. Adv Protein Chem 69:229–264

    Article  CAS  PubMed  Google Scholar 

  • Grifantini R, Toukoki C, Colaprico A, Gryllos I (2011) Peroxide stimulon and role of PerR in group A Streptococcus. J Bacteriol 193(23):6539–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185(1):243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2002) What biological purpose is served by superoxide reductase? J Biol Inorg Chem 7(6):659–663

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA, Linn S (1986) Bimodal pattern of killing DNA-repair-defective or anoxically grown Escherichia coli by Hydrogen peroxide. J Bacteriol 166(2):519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA, Linn S (1987) Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169(7):2967–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183(4):1434–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lestini R, Michel B (2007) UvrD controls the access of recombination proteins to blocked replication forks. EMBO J 26(16):3804–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loewen PC, Klotz MG, Hassett DJ (2000) Catalase–an ‘‘old’’ enzyme that continues to surprise us. ASM News 66(2):76–82

    Google Scholar 

  • Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S (2003) Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542(1–3):17–21

    Article  CAS  PubMed  Google Scholar 

  • Love PE, Lyle MJ, Yasbin RE (1985) DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc Nat Acad Sci USA 82(18):6201–6205

    Article  CAS  PubMed  Google Scholar 

  • Maiorino M, Aumann KD, Brigelius-Flohé R, Doria D, van den Heuvel J, McCarthy J, Roveri A, Ursini F, Flohé L (1995) Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hopp Seyler 376(11):651–660

    Article  CAS  Google Scholar 

  • Miller MC, Resnick JB, Smith BT, Lovett CM (1996) The Bacillus subtilis dinR gene codes for the analogue of Escherichia coli LexA. Purification and characterization of the DinR protein. J Biol Chem 271(52):33502–33508

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Imlay J (2012) Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Biochem Biophys 525(2):145–160

    Article  CAS  Google Scholar 

  • Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiol 150(pt 2):497–512

    Article  CAS  Google Scholar 

  • Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T (2010) Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genom 5:11–90

    Google Scholar 

  • Pomposiello P, Demple B (2002) Global adjustment of microbial physiology during free radical stress. Adv Microb Physiol 46:319–341

    Article  CAS  PubMed  Google Scholar 

  • Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P (2001) Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 69(8):5098–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procópio L, Alvarez VM, Jurelevicius DA, Hansen L, Sørensen SJ, Cardoso JS, Pádula M, Leitão AC, Seldin L, van Elsas JD (2012) Insight from the draft genome of Dietzia cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential. Ant van Leeuw 101(2):289–302

    Article  Google Scholar 

  • Schroeter R, Voigt B, Jürgen B, Methling K, Pöther DC, Schäfer H, Albrecht D, Mostertz J, Mäder U, Evers S, Maurer KH, Lalk M, Mascher T, Hecker M, Schweder T (2011) The peroxide stress response of Bacillus licheniformis. Proteom 11(14):2851–2866

    Article  CAS  Google Scholar 

  • Spector A, Yan GZ, Huang RR, McDermott MJ, Gascoyne PR, Pigiet V (1988) The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 263(10):4984–4990

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evo 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformat 2:2–3

    Google Scholar 

  • Vanaporn M, Wand M, Michell SL, Sarkar-Tyson M, Ireland P, Goldman S, Kewcharoenwong C, Rinchai D, Lertmemongkolchai G, Titball RW (2011) Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei. Microbiol 157(Pt 8):2392–2400

    Article  CAS  Google Scholar 

  • Wu G, Culley DE, Zhang W (2005) Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiol 151(Pt 7), 2175–2187

    Article  CAS  Google Scholar 

  • Yassin AF, Hupfer H, Schaal KP (2006) Dietzia cinnamea sp. nov., a novel species isolated from a perianal swab of a patient with a bone marrow transplant. Int J Syst Evol Microbiol 56(Pt 3):641–645

    Article  CAS  PubMed  Google Scholar 

  • Zeller T, Li K, Klug G (2006) Expression of the trxC gene of Rhodobacter capsulatus: response to cellular redox status is mediated by the transcriptional regulator OxyR. J Bacteriol 188(21):7689–7695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q, Keasling JD, Stahl DA, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2010) Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 12(10):2645–2657

    CAS  PubMed  Google Scholar 

  • Zuber P (2009) Management of oxidative stress in Bacillus. Ann Rev Microbiol 63:575–597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Procópio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, L., Pádula, M., van Elsas, J.D. et al. Oxidative damage induced by H2O2 reveals SOS adaptive transcriptional response of Dietzia cinnamea strain P4. World J Microbiol Biotechnol 35, 53 (2019). https://doi.org/10.1007/s11274-019-2628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2628-7

Keywords

Navigation