Skip to main content
Log in

High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents that would damage cells or even cause cell death. Bacteria have developed defensive systems, including induction of stress-sensing proteins and detoxification enzymes, to handle oxidative stress. Cyclic diguanylate (c-di-GMP) is a ubiquitous intracellular bacterial second messenger that coordinates diverse aspects of bacterial growth and behavior. In this study, we revealed a mechanism by which c-di-GMP regulated bacterial oxidative stress resistance in Pseudomonas putida KT2440. High c-di-GMP level was found to enhance bacterial resistance towards hydrogen peroxide. Transcription assay showed that expression of two oxidative stress resistance genes, fpr-1 and katE, was promoted under high c-di-GMP level. Deletion of fpr-1 and katE both decreased bacterial tolerance to hydrogen peroxide and weakened the effect of c-di-GMP on oxidative stress resistance. The promoted expression of fpr-1 under high c-di-GMP level was caused by increased cellular ROS via a transcriptional regulator FinR. We further demonstrated that the influence of high c-di-GMP on cellular ROS depend on the existence of FleQ, a transcriptional regulatory c-di-GMP effector. Besides, the regulation of katE by c-di-GMP was also FleQ dependent in an indirect way. Our results proved a connection between c-di-GMP and oxidative stress resistance and revealed a mechanism by which c-di-GMP regulated expression of fpr-1 and katE in P. putida KT2440.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abella M, Rodriguez S, Paytubi S, Campoy S, White MF, Barbé J (2007) The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein. Nucleic Acids Res 35:6788–6797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bojanovič K, D'Arrigo I, Long KS (2017) Global transcriptional responses to osmotic, oxidative, and imipenem stress conditions in Pseudomonas putida. Appl Environ Microbiol 83:e03236–e03216

    PubMed  PubMed Central  Google Scholar 

  • Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S (2017) The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 12:e0172071

    PubMed  PubMed Central  Google Scholar 

  • Cho JH, Kim EK, So JS (1995) Improved transformation of Pseudomonas putida KT2440 by electroporation. Biotechnol Tech 9:41–44

    CAS  Google Scholar 

  • Chua SL, Ding Y, Liu Y, Cai Z, Zhou J, Swarup S, Drautz-Moses DI, Schuster SC, Kjelleberg S, Givskov M (2016) Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol 6:160–162

    Google Scholar 

  • Dos Santos VA, Heim S, Moore ER, Strätz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286

    PubMed  Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hisert KB, MacCoss M, Shiloh MU, Darwin KH, Singh S, Jones RA, Ehrt S, Zhang Z, Gaffney BL, Gandotra S, Holden D, Murray D, Nathan C (2005) A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 56:1234–1245

    CAS  PubMed  Google Scholar 

  • Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL (2013) YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS One 8:e66740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284

    CAS  PubMed  Google Scholar 

  • Kim J, Park W (2014) Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98:6933–6946

    CAS  PubMed  Google Scholar 

  • Kim YC, Miller CD, Anderson AJ (1999) Transcriptional regulation by iron of genes encoding iron- and manganese-superoxide dismutases from Pseudomonas putida. Gene 239:129–135

    CAS  PubMed  Google Scholar 

  • Lacey MM, Partridge JD, Green J (2010) Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Microbiology 156:2873–2886

    CAS  PubMed  Google Scholar 

  • Lee Y, Peña-Llopis S, Kang YS, Shin HD, Demple B, Madsen EL, Jeon CO, Park W (2006) Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem Biophys Res Commun 339:1246–1254

    CAS  PubMed  Google Scholar 

  • Levanon S, San K, Bennett G (2010) Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89:556–564

    Google Scholar 

  • Li W, Hu L, Xie Z, Xu H, Li M, Cui T, He ZG (2018a) Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense. Nucleic Acids Res 46:7270–7283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Li M, Hu L, Zhu J, Xie Z, Chen J, He ZG (2018b) HpoR, a novel c-di-GMP effective transcription factor, links the second messenger’s regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res 46:3595–3611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loewen PC, Switala J, Triggs-Raine BL (1985) Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys 243:144–149

    CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190

    PubMed  Google Scholar 

  • Martin CH, Wu D, Prather KL (2010) Integrated bioprocessing for the pH-dependent production of 4-valerolactone from levulinate in Pseudomonas putida KT2440. Appl Environ Microbiol 76:417–424

    CAS  PubMed  Google Scholar 

  • Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895

    CAS  PubMed  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins Dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M (2003) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Google Scholar 

  • Newell PD, Monds RD, O'Toole GA (2009) LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106:3461–3466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikel PI, de Lorenzo V (2013) Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 163:143–154

    CAS  PubMed  Google Scholar 

  • Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38:128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2279–2290

    CAS  PubMed  Google Scholar 

  • Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis K, Papin JA, Martins dos Santos VAP (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210

    PubMed  PubMed Central  Google Scholar 

  • Semchyshyn H, Bagnyukova T, Storey K, Lushchak V (2005) Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902

    CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 163:76–85

    Google Scholar 

  • Spangler C, Böhm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81:226–231

    CAS  PubMed  Google Scholar 

  • Tammariello SP, Quinn MT, Estus S (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20:RC53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Handel K, Loewen PC, Takahashi H (1997) Identification and analysis of the rpoS-dependent promoter of katE, encoding catalase HPII in Escherichia coli. Biochim Biophys Acta 1352:161–166

    CAS  PubMed  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    PubMed  Google Scholar 

  • Ude S, Arnold D, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    CAS  PubMed  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G, Ohana P, Benziman M (1997) C-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett 416:207–211

    CAS  PubMed  Google Scholar 

  • Xiao Y, Nie H, Liu H, Luo X, Chen W, Huang Q (2016) C-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440. Environ Microbiol Rep 8:659–666

    PubMed  Google Scholar 

  • Yeom J, Imlay JA, Park W (2010a) Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285:22689–22695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom S, Yeom J, Park W (2010b) Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440. Microbiology 156:1487–1496

    CAS  PubMed  Google Scholar 

  • Yeom J, Lee Y, Park W (2012) ATP-dependent RecG helicase is required for the transcriptional regulator OxyR function in Pseudomonas species. J Biol Chem 287:24492–24504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Doan B, Schneider TD, Storz G (1999) OxyR and SoxRS regulation of fur. J Bacteriol 181:4639–4643

Download references

Funding

The research was financially supported by The National Key Research and Development Program of China (2016YFD0800206), the National Natural Science Foundation of China (41571230), and The China Postdoctoral Science Foundation (2018M642861).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenli Chen or Qiaoyun Huang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhu, W., He, M. et al. High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 103, 9077–9089 (2019). https://doi.org/10.1007/s00253-019-10178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10178-6

Keywords

Navigation