Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Tilmann W (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212. https://doi.org/10.1093/nar/gkt449
Article
PubMed
PubMed Central
Google Scholar
Bóka B, Manczinger L, Kecskeméti A, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Vágvölgyi C, Szekeres A (2016) Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC 6179J reveals novel fragmentation features of cyclic lipopeptides. Rapid Commun Mass Spectrom 30:1581–1590. https://doi.org/10.1002/rcm.7592
CAS
Article
PubMed
Google Scholar
Borriss R (2015) Bacillus, a plant beneficial bacterium. In: Lugtenberg B (ed) Principles of plant–microbe interactions. Microbes for sustainable agriculture. Springer, Berlin, pp 379–391
Google Scholar
Brown CT, Fishwick LK, Chokshi BM, Cuff MA (2011) Whole-genome sequencing and phenotypic analysis of Bacillus subtilis mutants following evolution under conditions of relaxed selection for sporulation. Appl Environ Microbiol 77:6867–6877. https://doi.org/10.1128/AEM.05272-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Burkholder PR, Giles NH (1947) Induced biochemical mutations in Bacillus subtilis. Am J Bot 34:345–348
CAS
Article
PubMed
Google Scholar
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNA Plotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120. https://doi.org/10.1093/bioinformatics/btn578
CAS
Article
PubMed
Google Scholar
Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world: pesticides use and management. InTech, Rijeka, pp 274–302
Google Scholar
Cawoy H, Debois D, Franzil L, De Pauw E (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295. https://doi.org/10.1111/1751-7915.12238
CAS
Article
PubMed
Google Scholar
Coutte F, Leclére V, Béchet M, Guez JS (2010) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109:480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x
CAS
Article
PubMed
Google Scholar
Deng Y, Zhu Y, Wang P, Zhu L (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. Carotovora J Bacteriol 193:2070–2071. https://doi.org/10.1128/JB.00129-11
CAS
Article
PubMed
Google Scholar
Earl AM, Eppinger M, Fricke WF, Rosovitz MJ (2012) Whole-genome sequences of Bacillus subtilis and close relatives. J Bacteriol 194:2378–2379. https://doi.org/10.1128/JB.05675-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
CAS
Article
PubMed
Google Scholar
Guo S, Mao Z, Wu Y, Hao K (2013) Genome sequencing of Bacillus subtilis strain XF-1 with high efficiency in the suppression of Plasmodiophora brassicae. Genome Announc 1:e0006613. https://doi.org/10.1128/genomeA.00066-13
Article
PubMed
Google Scholar
Guo Q, Li S, Lu X, Zhang X (2014) Complete genome sequence of Bacillus subtilis BAB-1, a biocontrol agent for suppression of tomato gray mold. Genome Announc 2(4):e00744–e00714. https://doi.org/10.1128/genomeA.00744-14
Article
PubMed
PubMed Central
Google Scholar
Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA (2012) A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett 586:132–136. https://doi.org/10.1016/j.febslet.2011.12.020
CAS
Article
PubMed
Google Scholar
Jolley KA, Maiden M (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinform 11:595. https://doi.org/10.1186/1471-2105-11-595
Article
Google Scholar
Jourdan E, Henry G, Duby F, Dommes J (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468. https://doi.org/10.1094/MPMI-22-4-0456
CAS
Article
PubMed
Google Scholar
Kamada M, Hase S, Fujii K, Miyake M, Sato K, Kimura K, Sakakibara Y (2015) Whole-genome sequencing and comparative genome analysis of Bacillus subtilis strains isolated from non-salted fermented soybean foods. PLoS ONE 10:e0141369. https://doi.org/10.1371/journal.pone.0141369
CAS
Article
PubMed
PubMed Central
Google Scholar
Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
CAS
Article
PubMed
Google Scholar
Krogh S, Jørgensen ST, Devine KM (1998) Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 180:2110–2117
CAS
PubMed
PubMed Central
Google Scholar
Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256. https://doi.org/10.1038/36786
CAS
Article
PubMed
Google Scholar
Kuroda A, Imazeki M, Sekiguchi J (1991) Purification and characterization of a cell wall hydrolase encoded by the cwlA gene of Bacillus subtilis. FEMS Microbiol Lett 65:9–13. https://doi.org/10.1111/j.1574-6968.1991.tb04703.x
CAS
Article
PubMed
Google Scholar
Löytynoja A (2014) Phylogeny-aware alignment with PRANK. Meth Mol Biol 1079:155–170. https://doi.org/10.1007/978-1-62703-646-7_10
Article
Google Scholar
Luo C, Liu X, Zhou H, Wang X (2015) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81:422–431. https://doi.org/10.1128/AEM.02921-14
CAS
Article
PubMed
Google Scholar
Manczinger L, Bóka B, Vörös M, Sajben E (2011) Influence of culture conditions on the antibiotic production of antagonistic Bacillus strains isolated from tomato rhizosphere. Agrár- és Vidékfejlesztési Szemle 6:S408–S412
Google Scholar
Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674. https://doi.org/10.1021/cr960029e
CAS
Article
PubMed
Google Scholar
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:339–346. https://doi.org/10.1093/nar/gkr466
CAS
Article
Google Scholar
Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668. https://doi.org/10.1128/jb.170.12.5662-5668.1988
CAS
Article
PubMed
PubMed Central
Google Scholar
Nene YL, Thapliyal PN (1993) Fungicides in Plant Disease Control, Ed. 3. International Science Publisher, New York
Google Scholar
Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. https://doi.org/10.1007/s002530051432
CAS
Article
PubMed
Google Scholar
Pybus C, Pedraza-Reyes M, Ross CA, Martin H (2010) Transcription-associated mutation in Bacillus subtilis cells under stress. J Bacteriol 192:3321–3328. https://doi.org/10.1128/JB.00354-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Quadri LE, Weinreb PH, Lei M, Nakano MM (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595. https://doi.org/10.1021/bi9719861
CAS
Article
PubMed
Google Scholar
Reva ON, Dixelius C, Meijer J, Priest FG (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol Ecol 48:249–259. https://doi.org/10.1016/j.femsec.2004.02.003
CAS
Article
PubMed
Google Scholar
Robleto EA, Martin HA, Pedraza-Reyes M (2012) Mfd and transcriptional derepression cause genetic diversity in Bacillus subtilis. Front Biosci 4:1246–1254. https://doi.org/10.2741/E455
Article
Google Scholar
Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521. https://doi.org/10.1016/S1389-1723(00)80049-3
CAS
Article
PubMed
Google Scholar
Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. https://doi.org/10.1007/s13127-011-0056-0
Article
Google Scholar
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis andpost-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
CAS
Article
PubMed
PubMed Central
Google Scholar
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
CAS
Article
PubMed
Google Scholar
Szekeres A, Bóka B, Bencsik O, Sajben E (2013) Identification of surfactin homologues from a Bacillus subtilis strain using ion-trap mass spectrometry. Acta Microbiol Immunol Hung 60(S):88
Google Scholar
Vágvölgyi C, Sajben-Nagy E, Bóka B, Vörös M, Berki A, Palágyi A, Krisch J, Škrbić B, Đurišić-Mladenović N, Manczinger L (2013) Isolation and characterization of antagonistic Bacillus strains capable to degrade ethylenethiourea. Curr Microbiol 66:243–250. https://doi.org/10.1007/s00284-012-0263-8
CAS
Article
PubMed
Google Scholar
Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
Article
PubMed
Google Scholar
Waters SM, Zeigler DR, Nicholson WL (2015) Experimental evolution of enhanced growth by Bacillus subtilis at low atmospheric pressure: genomic changes revealed by whole-genome sequencing. Appl Environ Microbiol 81:7525–7532. https://doi.org/10.1128/AEM.01690-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0: a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:237–243. https://doi.org/10.1093/nar/gkv437
CAS
Article
Google Scholar
Willett JLE, Gucinski GC, Fatherree JP, Low DA (2015) Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc Natl Acad Sci USA 112:11341–11346. https://doi.org/10.1073/pnas.1512124112
CAS
Article
PubMed
PubMed Central
Google Scholar
Wintersinger JA, Wasmuth JD (2015) Kablammo: an interactive, web-based BLAST results visualizer. Bioinformatics 31:1305–1306. https://doi.org/10.1093/bioinformatics/btu808
Article
PubMed
Google Scholar
Young R, Bläsi U (1995) Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev 17:191–205. https://doi.org/10.1111/j.1574-6976.1995.tb00202.x
CAS
Article
PubMed
Google Scholar
Zeigler DR (2011) The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology 157:2033–2041. https://doi.org/10.1099/mic.0.048520-0
CAS
Article
PubMed
Google Scholar
Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995. https://doi.org/10.1128/JB.00722-08
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478
CAS
Article
PubMed
Google Scholar
Zhao Y, Selvaraj JN, Xing F, Zhou L (2014) Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9(3):e92486. https://doi.org/10.1371/journal.pone.0092486
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Liang Y, Lynch K, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485
CAS
Article
PubMed
PubMed Central
Google Scholar