Skip to main content

Advertisement

Log in

Thermophilic microorganisms in biomining

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40–50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi H, Shafaei SZ, Noaparast M, Manafi Z, Niemelä SI, Tuovinen OH (2014) Mesophilic and thermophilic bioleaching of copper from chalcopyrite-containing molybdenite concentrate. Int J Miner Process 128:25–32

    Article  CAS  Google Scholar 

  • Astudillo C, Acevedo F (2009) Effect of CO2 air enrichment in the biooxidation of a refractory gold concentrate by Sulfolobus metallicus adapted to high pulp densities. Hydrometallurgy 97:94–97

    Article  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  Google Scholar 

  • Batty JD, Rorke GV (2006) Development and commercial demonstration of the BioCOP™ thermophile process. Hydrometallurgy 83:83–89

    Article  CAS  Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  Google Scholar 

  • Brierley JA, Brierley CL (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59:233–239

    Article  CAS  Google Scholar 

  • Brierley LC, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by minerals industries. Appl Microbiol Biot 97:7543–7552

    Article  CAS  Google Scholar 

  • Castro C, Donati E (2016a) Effects of different energy sources on cell adhesion and bioleaching of a chalcopyrite concentrate by extremophilic archaeon Acidianus copahuensis. Hydrometallurgy 162:49–56

    Article  CAS  Google Scholar 

  • Castro C, Donati E (2016b) Improving zinc recovery by the thermoacidophilic archaeon Acidianus copahuensis using tetrathionate. T Nonferr Metal Soc, in press

  • Chan CS, Chan KG, Tay YL, Chua YH, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177–183

    Google Scholar 

  • Clark ME, Batty JD, van Buuren CB, Dew DW, Eamon MA (2006) Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy 83:3–9

    Article  CAS  Google Scholar 

  • Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part IV: the role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy 93:106–115

    Article  Google Scholar 

  • Cruz FLS, Oliveira VA, Guimarães D, Souza AD, Leão VA (2010) High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications. Hydrometallurgy 105:103–109

    Article  CAS  Google Scholar 

  • d’Hugues P, Foucher S, Galle’-Cavalloni P, Morin D (2002) Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Min Process 66:107–119

    Article  Google Scholar 

  • Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biot 100:2499–2510

    Article  CAS  Google Scholar 

  • Dold B (2014) Mineralogical and geochemical controls in biomining and bioremediation. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry soil biology. Springer, Heidelberg, pp 119–138

    Chapter  Google Scholar 

  • Donati E, Sand W (2007) Microbial processing of metal sulfides. Springer, Heidelberg

    Book  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms. Microbiology 149:1959–1970

    Article  CAS  Google Scholar 

  • Driessen AJM, Albers SV (2007) Membrane adaptations of (hyper)thermophiles to high temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 104–116

    Chapter  Google Scholar 

  • Du-Plessis CA, Batty JD, Dew DW (2007) Commercial applications of thermophile bioleaching. In: Rawlings D, Johnson B (eds) Biomining. Springer, Berlin

    Google Scholar 

  • Ehrlich HL, Newman DK, Kappler A (2015) Ehrlich’s Geomicrobiology. CRC Press, Florida

    Book  Google Scholar 

  • Ettema TJ, Brinkman AB, Lamers PP, Kornet NG, de Vos WM, van der Oost J (2006) Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology 152:1969–1979

    Article  CAS  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Article  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  • Gentina JC, Acevedo F (2013) Application of bioleaching to copper mining in Chile. Electronic J Biotechnol. doi:10.2225/vol16-issue3-fulltext-12

    Google Scholar 

  • Gericke M, Govender Y, Pinches A (2010) Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 104:414–419

    Article  CAS  Google Scholar 

  • Giaveno MA, Pettinari G, Toril EG, Aguilera A, Urbieta MS, Donati E (2011) The influence of two thermophilic consortia on troilite (FeS) dissolution. Hydrometallurgy 106:19–25

    Article  CAS  Google Scholar 

  • Giaveno MA, Urbieta MS, Ulloa JR, Toril EG, Donati ER (2013) Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microbial Ecol 65:336–346

    Article  CAS  Google Scholar 

  • Jerez CA (2011) Bioleaching and biomining for the industrial recovery of metals. In: Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Elsevier, Amsterdam, pp 717–729

    Chapter  Google Scholar 

  • Johnson DB (2014) Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotech 30:24–31

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2007) Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 237–261

    Chapter  Google Scholar 

  • Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher KM, Ginige MP, Cheng KY, Hilario F, du Plessis C (2014) Biohydrometallurgical iron oxidation and precipitation: part I—effect of pH on process performance. Hydrometallurgy 147–148:255–263

    Article  Google Scholar 

  • Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea. doi:10.1155/2012/789652

    Google Scholar 

  • Lantican NB, Diaz MGQ, Cantera JJL, Francis L, Raymundo AK (2011) Microbial community of a volcanic mudspring in the Philippines as revealed by 16S rDNA sequence analysis and fluorescence in situ hybridization. World J Microbiol Biot 27:859–867

    Article  Google Scholar 

  • Li Y, Kawashima N, Li J, Chandra AP, Gerson AR (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interfac 197–198:1–32

    Google Scholar 

  • Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G (2014) Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles. Bioresour Technol 153:300–306

    Article  CAS  Google Scholar 

  • Liang CL, Xia JL, Zhao XJ, Yang Y, Gong SQ, Nie ZY, Ma CY, Zheng L, Zhao YD, Qiu GZ (2010) Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy 105:179–185

    Article  CAS  Google Scholar 

  • Lindström EB, Sehlin HM (1989) High efficiency of plating of the thermophilic sulfur-dependent archaebacterium Sulfolobus acidocaldarius. Appl Environ Microbiol 55:3020–3021

    Google Scholar 

  • Lindström EB, Sandström A, Sundkvist JE (2003) A sequential two-step process using moderately and extremely thermophilic cultures for biooxidation of refractory gold concentrates. Hydrometallurgy 71:21–30

    Article  Google Scholar 

  • Madigan MT, Clark DP, Stahl D, Martinko JM (2010) Brock biology of microorganisms. Pearson, London

    Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371

    Article  Google Scholar 

  • Neale JW, Robertson SW, Muller HH, Gericke M (2009) Integrated piloting of a thermophilic bioleaching process for the treatment of a low-grade nickel-copper sulphide concentrate. J South Afr Inst Min Metall 109:273–293

    CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Norris PR, Brown CF, Caldwell PE (2012) Ore column leaching with thermophiles: iI, polymetallic sulfide ore. Hydrometallurgy 127–128:70–76

    Article  Google Scholar 

  • Norris PR, Burton NP, Clark DA (2013) Mineral sulfide concentrate leaching in high temperature bioreactors. Miner Eng 48:10–19

    Article  CAS  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biot 63:249–257

    Article  CAS  Google Scholar 

  • Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotech Adv 28:839–848

    Article  CAS  Google Scholar 

  • Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583

    Article  CAS  Google Scholar 

  • Orell A, Remonsellez F, Arancibia R, Jerez CA (2013) Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus. Archaea. doi:10.1155/2013/289236

    Google Scholar 

  • Panda S, Akcil A, Pradhan N, Deveci H (2015) Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. Bioresour Technol 196:694–706

    Article  CAS  Google Scholar 

  • Patel BC, Tipre DR, Dave SR (2012) Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Bioresour Technol 118:483–489

    Article  CAS  Google Scholar 

  • Pradhan N, Nathsarma KC, Srinivasa Rao K, Sukla LB, Mishra BK (2008) Heap bioleaching of chalcopyrite; a review. Miner Eng 21:355–365

    Article  CAS  Google Scholar 

  • Qin W, Yang C, Lai S, Wang J, Liu K, Zhang B (2013) Bioleaching of chalcopyrite by moderately thermophilic microorganisms. Bioresour Technol 129:200–208

    Article  CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  • Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44

    Article  CAS  Google Scholar 

  • Reed JC, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea. doi:10.1155/2013/373275

    Google Scholar 

  • Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati E, Sand W (eds) Microbial processing of metal sulfides. Springer, Heildelberg, pp 3–33

    Chapter  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbial 65:319–321

    CAS  Google Scholar 

  • Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng/Biotechnol 141:1–47

    Article  Google Scholar 

  • Schippers A, Glombitza F, Sand W (2014) Geobiotechnology I metal-related issues. Springer, Heidelberg

    Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  Google Scholar 

  • Takatsugi K, Sasaki K, Hirajima T (2011) Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic. Hydrometallurgy 109:90–96

    Article  CAS  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10:55–65

    Article  Google Scholar 

  • Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59:177–185

    Article  CAS  Google Scholar 

  • Tsudome M, Deguchi S, Tsujii K, Ito S, Horikoshi K (2009) Versatile solidified nanofibrous cellulose-containing media for growth of extremophiles. Appl Environ Microbiol 75:4616–4619

    Article  CAS  Google Scholar 

  • Ulrih NP, Gmajner D, Raspor P (2009) Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl Microbiol Biot 84:249–260

    Article  CAS  Google Scholar 

  • Urbieta MS, Toril EG, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina. Microbial Ecol 64:91–104

    Article  Google Scholar 

  • Urbieta MS, Toril EG, Giaveno MA, Bazán AA, Donati ER (2014) Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region in Argentina. Syst Appl Microbiol 37:429–441

    Article  Google Scholar 

  • Urbieta MS, Porati GW, Segretín AB, González-Toril E, Giaveno MA, Donati ER (2015) Copahue geothermal system: a volcanic environment with rich extreme prokaryotic biodiversity. Microorganisms 3:344–363

    Article  Google Scholar 

  • Van Hille RP, van Wyk N, Harrison STL (2011) Review of the microbial ecology of BIOX® reactors illustrates the dominance of the genus Ferroplasma in many commercial reactors. In: Qiu G, Jiang T, Qin W, Liu X, Yang Y, Wang H (eds) Biohydormetallurgy: biotech key to unlock minerals resources value. Central South University Press, Changsha, pp 1021–1031

    Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A. Appl Microbiol Biot 97:7529–7541

    Article  CAS  Google Scholar 

  • Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Watling HR (2013) Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydrometallurgy 140:163–180

    Article  CAS  Google Scholar 

  • Watling HR (2014) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5:1–60

    Article  Google Scholar 

  • Watling HR, Collinson DM, Corbett MK, Shiers DW, Kaksonen AH, Watkin LJ (2016) Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)—and sulfur-oxidizing microorganisms. Res Microbiol 167:546–554

    Article  CAS  Google Scholar 

  • Zhao H, Wang J, Yang C, Hu M, Gan X, Tao L, Qin W, Qiu G (2015) Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions. Hydrometallurgy 151:141–150

    Article  CAS  Google Scholar 

  • Zhou XX, Wang YB, Pan YJ, Li WF (2008) Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 34:25–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. ER Donati and Dr. MS Urbieta are researchers from CONICET. This research was supported by ANPCyT (PICT 2013-630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Rubén Donati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donati, E.R., Castro, C. & Urbieta, M.S. Thermophilic microorganisms in biomining. World J Microbiol Biotechnol 32, 179 (2016). https://doi.org/10.1007/s11274-016-2140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2140-2

Keywords

Navigation