Skip to main content
Log in

Expression and functional analysis of a glycoside hydrolase family 45 endoglucanase from Rhizopus stolonifer

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel endoglucanase gene was cloned from Rhizopus stolonifer and expressed in Escherichia coli, the gene product EG II (45 kDa) was assigned to Glycoside Hydrolase Family 45 (GH45), and its specific activity on phosphoric acid-swollen cellulose (PASC) was 48 IU/mg. To solve the problem of substrate accumulation in the cellulose hydrolysis and enhance the catalytic efficiency of endoglucanase, the eg2 gene was modified by site directed mutagenesis. Mutations generated by overlapping PCR have been proven to increase its catalytic activity on carboxymenthyl cellulose, microcrystalline cellulose (Avicel) and PASC, among which the mutant EG II-E containing all 6 mutations (N39S, V136D, T251G, D255G, P256S and E260D) peaked 121 IU/mg on PASC. The bioinformatic analysis showed that 2 key catalytic residues (D136 and D260) moved closer with the opening of a loop after mutagenesis, and a tunnel was formed by structural transformation. This structure was conducive for the substrate to access the active centre, and D136 played an indispensable role in the substrate recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azevedo H, Bishop D, Cavaco-Paulo A (2000) Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme Microb Technol 27:325–329

    Article  CAS  Google Scholar 

  • Batista PR, de Souza Costa MG, Pascutti PG, Bisch PM, de Souza W (2011) High temperatures enhance cooperative motions between CBM and catalytic domains of a thermostable cellulase: mechanism insights from essential dynamics. Phys Chem Chem Phys 13:13709–13720

    Article  CAS  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347

    Article  CAS  Google Scholar 

  • Damude HG, Withers SG, Kilburn DG, Miller RC Jr, Warren RA (1995) Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry 34:2220–2224

    Article  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  Google Scholar 

  • du Plessis L, Rose SH, van Zyl WH (2010) Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 86:1503–1511

    Article  CAS  Google Scholar 

  • Elgavish S, Shaanan B (1997) Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci 22:462–467

    Article  CAS  Google Scholar 

  • Franken KL, Hiemstra HS, van Meijgaarden KE, Subronto Y, den Hartigh J, Ottenhoff TH, Drijfhout JW (2000) Purification of his-tagged protein by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr Purif 18:95–99

    Article  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain resction. Gene 77:51–59

    Article  CAS  Google Scholar 

  • Igarashi K, Ishida T, Hori C, Samejima M (2008) Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 74:5628–5634

    Article  CAS  Google Scholar 

  • Irwin D, Shin D, Zhang S, Barr BK, Sakon J, Karplus A, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    CAS  Google Scholar 

  • Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesi. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:7241–7257

    Article  CAS  Google Scholar 

  • Linder M, Nevanen T, Teeri TT (1999) Design of a pH-dependent cellulose-binding domain. FEBS Lett 447:13–16

    Article  CAS  Google Scholar 

  • Liu G, Wei X, Qin Y, Qu Y (2010) Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol 56:223–229

    Article  CAS  Google Scholar 

  • Medve J, Lee D, Tjerneld F (1998) Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography. J Chromatogr A 808:153–165

    Article  CAS  Google Scholar 

  • Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Biotecd PL (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb Technol 34:332–341

    Article  CAS  Google Scholar 

  • Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1:127–132

    Article  CAS  Google Scholar 

  • Moriya T, Murashima K, Nakane A, Yanai K, Sumida N, Koga J, Murakami T, Kono T (2003) Molecular Cloning of Endo-beta-D-1,4-Glucanase Genes, rce1, rce2 and rce3, from Rhizopus oryzae. J Bacteriol 185:1749–1756

    Article  CAS  Google Scholar 

  • Nakazawa H, Okada K, Onodera T, Oqasawara W, Okada H, Morikawa Y (2009) Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol 83:649–657

    Article  CAS  Google Scholar 

  • Ramos LP, Breuil C, Saddler JN (1993) The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb Tech 15:19–25

    Article  CAS  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) Rasmol: biomolecular graphics for all. Trends Biochem Sci 20:374

    Article  CAS  Google Scholar 

  • Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schülein M (1993) Sterochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem 217:947–953

    Article  CAS  Google Scholar 

  • Schülein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239–252

    Article  Google Scholar 

  • Shi H, Yin X, Wu M, Tang C, Zhang H, Li J (2012) Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol 39:347–357

    Article  CAS  Google Scholar 

  • Shimonaka A, Koga J, Baba Y, Nishimura T, Murashima K, Kubota H, Kono T (2006) Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry. Biosci Biotechnol Biochem 70:1013–1016

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:4777–4780

    Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  Google Scholar 

  • Valjakka J, Rouvinen J (2003) Structure of 20 K endoglucanase from Melanocarpus albomyces at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr 59:765–768

    Article  Google Scholar 

  • Vlasenko E, Schülein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  CAS  Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanaseIII from Trichoderma reesei. Biomol Eng 22:89–94

    Article  CAS  Google Scholar 

  • Warner CD, Camci-Unal G, Pohl NLB, Ford C, Reilly PJ (2013) Substrate binding by the catalytic domain and carbohydrate binding module of ruminococcus flavefaciens FD-1 xyloglucanase/endoglucanase. Ind Eng Chem Res 52:30–36

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 30270135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Zhang, Y., Yang, Y. et al. Expression and functional analysis of a glycoside hydrolase family 45 endoglucanase from Rhizopus stolonifer . World J Microbiol Biotechnol 30, 2943–2952 (2014). https://doi.org/10.1007/s11274-014-1722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1722-0

Keywords

Navigation