Skip to main content

Advertisement

Log in

Molecular diversity of the methanotrophic bacteria communities associated with disused tin-mining ponds in Kampar, Perak, Malaysia

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220

    Article  CAS  Google Scholar 

  • Ang LH, Ho WM (2002) Afforestation of tin tailings in Malaysia. In: 12th International Soil Conservation Organization Conference, Beijing, pp 440–445

  • Arumugam PT (1994) Present utilization and recommendations for management of tin-mine lakes in Malaysia. Intl Assoc Theor Appl Limnol Commun 24:265–272

    Google Scholar 

  • Auman AJ, Stolyar S, Costello A et al (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66(12):5259–5266

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M et al (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cy 18(GB4009):1–12. doi:10.1029/2004gb002238

    Google Scholar 

  • Bastviken D, Santoro AL, Marotta H et al (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Sci Technol 44(14):5450–5455. doi:10.1021/es1005048

    Article  CAS  Google Scholar 

  • Bussmann I, Pester M, Brune A et al (2004) Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 47:179–189. doi:10.1016/S0168-6496(03)00260-5

    Article  CAS  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65(11):5066–5074

    CAS  Google Scholar 

  • Costello AM, Auman AJ, Macalady JL et al (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4(8):443–450

    Article  CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN et al (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(3):955–969

    Article  CAS  Google Scholar 

  • Degelmann DM, Borken W, Drake HL et al (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. Appl Environ Microbiol 76(10):3228–3235. doi:10.1128/AEM.02730-09

    Article  CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE et al (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53(5):1231–1239. doi:10.1099/ijs.0.02481-0

    Article  CAS  Google Scholar 

  • EPA (2010) Methane and nitrous oxide emissions from natural sources. http://www.epa.gov/methane/sources.html. Accessed 4 May 2014

  • Erwin DP, Erickson IK, Delwiche ME et al (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71(4):2016–2025. doi:10.1128/AEM.71.4.2016-2025.2005

    Article  CAS  Google Scholar 

  • Han B, Chen Y, Abell G et al (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70(2):40–51. doi:10.1111/j.1574-6941.2009.00707.x

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  • Ho A, Kerckhof FM, Luke C et al (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5(3):335–345

    Article  CAS  Google Scholar 

  • King GM (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol 60(9):3220–3227

    CAS  Google Scholar 

  • Lau R (1999) TED case studies: tin mining in Malaysia—present and future. Trade Environ Database Case Stud 9(3):576

    Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  Google Scholar 

  • Lozupone C, Hamady M, Kelley S et al (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5):1576–1785. doi:10.1128/AEM.01996-06

    Article  CAS  Google Scholar 

  • Lüke C, Krause S, Cavigiolo S et al (2010) Biogeography of wetland rice methanotrophs. Environ Microbiol 12(4):862–872. doi:10.1111/j.1462-2920.2009.02131.x

    Article  Google Scholar 

  • Mallick S, Dutta V (2009) Estimation of methane emission from a North-Indian Subtropical Wetland. J Sustain Dev 2(2):125–132

    Google Scholar 

  • McDonald IR, Murrell JC (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210

    Article  CAS  Google Scholar 

  • McDonald IR, Smith K, Lidstrom ME (2005) Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiol Lett 250(2):287–293. doi:10.1016/j.femsle.2005.07.016

    Article  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y et al (2007) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315. doi:10.1128/aem.02233-07

    Article  Google Scholar 

  • Nercessian O, Noyes E, Kalyuzhnaya MG et al (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71(11):6885–6899. doi:10.1128/AEM.71.11.6885-6899.2005

    Article  CAS  Google Scholar 

  • Panneer Selvam B, Natchimuthu S, Arunachalam L et al (2014) Methane and carbon dioxide emissions from inland waters in India—implications for large scale greenhouse gas balances. Glob Chang Biol (IN Press). doi:10.1111/gcb.12575

  • Pester M, Friedrich MW, Schink B et al (2004) pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl Environ Microbiol 70(5):3138–3142. doi:10.1128/AEM.70.5.3138-3142.2004

    Article  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256. doi:10.1093/molbev/msn083

    Article  CAS  Google Scholar 

  • Rahalkar M, Schink B (2007) Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl Environ Microbiol 73(13):4389–4394. doi:10.1128/AEM.02602-06

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005

    Article  CAS  Google Scholar 

  • Siljanen HM, Saari A, Krause S et al (2011) Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiol Ecol 75(3):430–445. doi:10.1111/j.1574-6941.2010.01015.x

    Article  CAS  Google Scholar 

  • Sow SLS, Khoo G, Chong LK et al (2014) Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia. World J Microbiol Biotechnol 30(2):757–766. doi:10.1007/s11274-013-1506-y

    Article  CAS  Google Scholar 

  • Strauss EA, Lamberti GA (2000) Regulation of nitrification in aquatic sediments by organic carbon. Limnol Oceanogr 45(8):1854–1859

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  Google Scholar 

  • Wahlen M (1993) The global methane cycle. Annu Rev Earth Planet Sci 21:407–426

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA (1998) Resuspension in lakes and its ecological impact—a review. Arch Hydrobiol 51:185–200

    Google Scholar 

  • Wu L, Ma K, Lu Y (2009) Rice roots select for type I methanotrophs in rice field soil. Syst Appl Microbiol 32(6):421–428. doi:10.1016/j.syapm.2009.05.001

    Article  CAS  Google Scholar 

  • Yusoff FM, Shariff M, Gopinath N (2006) Diversity of Malaysian aquatic ecosystems and resources. Aquat Ecosyst Health 9(2):119–135. doi:10.1080/14634980600713315

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by Tunku Abdul Rahman University and the research grant awarded by the Malaysia Toray Science Foundation (09/G23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. A. Ong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Supplementary material 2 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sow, S.L.S., Khoo, G., Chong, L.K. et al. Molecular diversity of the methanotrophic bacteria communities associated with disused tin-mining ponds in Kampar, Perak, Malaysia. World J Microbiol Biotechnol 30, 2645–2653 (2014). https://doi.org/10.1007/s11274-014-1687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1687-z

Keywords

Navigation