Skip to main content
Log in

Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nine aromatic compounds (caffeic acid, syringaldehyde, vanillic acid, guaiacol, vanillin, sinapic acid, syringol, syringic acid and ferulic acid) and four metallic compounds (CuSO4, AgNO3, MnSO4, and CaCl2) were tested for their ability to increase laccase (Lac) activity in the ligninolytic basidiomycete Phlebia brevispora BAFC 633. The addition of syringaldehyde, syringol, guaiacol, sinapic acid, vanillin, ferulic acid and CuSO4 showed a positive effect on fungal growth; however, it decreased dramatically with the addition of AgNO3 and did not undergo changes in the presence of CaCl2 or MnSO4. Lac activity increased with the addition of all the compounds tested, depending on the concentration and the day of culture. P. brevispora BAFC 633 produced two isoenzymes, a constitutively expressed of 60 kDa and another of 75 kDa expressed upon induction by sinapic acid, MnSO4 or CuSO4. Lac secretion capacity of P. brevispora BAFC 633 can be increased 27 times higher than the control with the highest levels detected in the presence of 0.3 mM CuSO4 at day 14. The action is affected at pre-transcriptional level regulating at the onset of the process, however it does not rule out the effect at the post-transcriptional and post-translational levels, for which is necessary to deepen in the knowledge of all possible regulation points of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    CAS  Google Scholar 

  • Buswell JM, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Cavallazzi JRP, KasuyaI CM, Soares MA (2005) Screening of inducers for laccase production by Lentinula edodes in liquid médium. Braz J Microbiol 36:383–387

    Article  CAS  Google Scholar 

  • Chen CL, Chanoh M, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporim. Holzforschung 36:3–9

    Article  CAS  Google Scholar 

  • Cho N-S, Kim D-H, Cho H-Y, Ohga S, Leonowicz A (2006) Effect of various compounds on the activity of laccases from basidiomycetes and their oxidative and demethoxylating activities. J Fac Agr Kyushu U 51:211–218

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  Google Scholar 

  • Collins PJ, Dobson A (2002) Regulation of laccase gene transcription in Trametes versicolor. Enzym Microb Technol 31:3–9

    Article  Google Scholar 

  • D´Souza TM, Merritt CS, Reddy CA (1999) Lignin modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microb 65:5307–5313

    Google Scholar 

  • D´Souza-Ticlo DT (2008) The lignin-degrading enzyme, laccase from marine fungi; biochemical and molecular approaches. Thesis doctoral, Goa University, Dona Paula, Goa, India

  • D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microb 62:3739–3744

    Google Scholar 

  • De la Rubia T, Linares A, Pérez J, Muňoz-Dorado J, Romera J, Martínez J (2002) Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido alba. Res Microbiol 153:547–554

    Article  Google Scholar 

  • Eggert C, Temp U, Eriksson E (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microb 62:1151–1158

    CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T, Agathos SN (2009) Lignocellulose degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microb Biotechnol 25:331–339

    Article  CAS  Google Scholar 

  • Faraco V, Giardina P, Palmieri G, Sannia G (2002) Metal-activated laccase promoters. Biotechnol Progr 21:105–111

    Article  CAS  Google Scholar 

  • Faraco V, Giardina P, Sannia G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162

    Article  CAS  Google Scholar 

  • Fernández-Larrea J, Stahl U (1996) Isolation and characterization of a laccase gene from Podospora anserina. Mol Genet Genomics 252:539–551

    Google Scholar 

  • Field JA, Jong E, Feijoo-Costa G, Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49

    Article  CAS  Google Scholar 

  • Fonseca MI (2012) Utilización de hongos de pudrición blanca de la Provincia de Misiones en procesos de biopulpado: aspectos bioquímicos y moleculares de sistemas ligninolíticos involucrados y prospección biotecnológica. Tesis Doctoral, Universidad Nacional de Tucumán

  • Fonseca MI, Shimizu E, Villalba LL, Zapata PD (2010) Laccase-producing ability and the inducing effect of Copper on laccase production of white rot fungi native from Misiones (Argentina). Enzym Microb Technol 46:534–539

    Article  CAS  Google Scholar 

  • Fonseca MI, Fariña JI, Sanabria NI et al (2013) Influence of culture conditions on laccase production, growth, and isoenzymes patterns in native white rot fungi from the misiones rainforest (Argentina). BioResources 8:2855–2866

    Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232

    Article  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer K et al (2003) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    Google Scholar 

  • Gorbatova ON, Koroleva OV, Landesman EO et al (2006) Increase of the detoxification potential of basidiomycetes by induction of laccase biosynthesis. Appl Biochem Microbiol 42:414–419

    Article  CAS  Google Scholar 

  • Guillén Y, Machuca A (2008) The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World J Micro Biot 24:31–37

    Article  Google Scholar 

  • Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies on the accumulation of heavy metal elements in biological systems: accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12:90–96

    Article  CAS  Google Scholar 

  • Ikehata K, Buchanan ID, Smith DW (2004) Recent development in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Sci 3:1–19

    Article  CAS  Google Scholar 

  • Jellison J, Connolly J, Goodell B (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegrad 39:165–179

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • KoroIjova-Skorobogat’ko OV, Stepanova EV, Gavrilova V et al (1998) Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol Appl Biochem 28:47–54

    Google Scholar 

  • Kubicek CP, Hampel WA, Röhr M (1979) Manganese deficiency leads to elevated amino acid pool levels in citric acid accumulating Aspergillus niger. Arch Microbiol 123:73–79

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee IY, Jung KH, Lee CH, Park YH (1999) Enhanced production of laccase in Trametes versicolor by the addition of ethanol. Biotechnol Lett 21:965–968

    Article  CAS  Google Scholar 

  • Levin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin modifying enzymes in the white rot fungus Trametes trogii. Mycologia 94:377–383

    Article  CAS  Google Scholar 

  • Lu X, Ding S (2010) Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 51:68–74

    Article  CAS  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036

    Article  CAS  Google Scholar 

  • Mäkelä MR, Hildén KS, Hakala TK, Hatakka A, Lundell TK (2006) Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Curr Genet 50:323–333

    Article  Google Scholar 

  • Mansur M, Suárez T, González AE (1998) Differential gene expression in the laccase gene family from Basidiomycete I–62 (CECT 20197). Appl Environ Microbiol 64:771–774

    CAS  Google Scholar 

  • Mayer AM, Stapler RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–566

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Muñoz C, Guillen F, Martinez AT, Martinez MJ (1997) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5

    Article  Google Scholar 

  • Murugesan K, Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid culture. Enzym Microbial Technol 40:1662–1672

    Article  CAS  Google Scholar 

  • Murugesan K, Chang YY, Kim YM et al (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298–308

    Article  CAS  Google Scholar 

  • Myasoedova NM, Chernykh AM, Psurtseva NV et al (2008) New efficient producers of fungal laccases. Appl Microbiol Biotechnol 44:73–77

    CAS  Google Scholar 

  • Orthofer R, Kubicek CP, Rohr M (1979) Lipid levels and manganese deficiency in various citric acid producing strains of Aspergillus niger. FEMS Microbiol Lett 5:403–406

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C et al (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  Google Scholar 

  • Patel H, Gupte A, Gupte S (2009) Effect of different culture conditions and inducers on production of laccase by Basidiomycetes fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation. BioResources 4:268–284

    CAS  Google Scholar 

  • Pezzella C, Autore F, Giardina P et al (2009) The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55:45–57

    Article  CAS  Google Scholar 

  • Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011) Induction and transcriptional regulation of laccases in fungi. Curr Genomics 12:104–112

    Article  CAS  Google Scholar 

  • Preussler CA, Shimizu E, Villalba LL, Zapata PD (2009) Inducción con cobre de la enzima lacasa en el hongo de pudrición blanca Trametes villosa (Sw.:Fr.) Kreisel. Rev Cien Tecnol 12:9–16

    Google Scholar 

  • Rollins JA, Dickman MB (1998) Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl Environ Microbiol 64:2539–2544

    CAS  Google Scholar 

  • Ryan S, Schnitzhofer W, Tzanov T et al (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzym Microb Technol 33:766–774

    Article  CAS  Google Scholar 

  • Salony MS, Bisaria VS (2006) Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Appl Microbiol Biotechnol 71:646–653

    Article  CAS  Google Scholar 

  • Saparrat M, Balatti PA, Martínez MJ, Jurado M (2010) Differential regulation of laccase gene expression in Coriolopsis rigida LPSC no. 232. Fungal Biol 114:999–1006

    Article  CAS  Google Scholar 

  • Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajorcaju. Microbiology 147:1755–1763

    CAS  Google Scholar 

  • Stajic M, Persky L, Hadar Y, Friesem D, Duletic-Lausevic S, Wasser SP, Nevo E (2006) Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Appl Biochem Biotechnol 128:87–96

    Google Scholar 

  • Terron MC, Gonzalez T, Carbajo JM et al (2004) Structurally closely-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genet Biol 41:954–962

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Xiao YZ, Tu XM, Wang J et al (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomicete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60:700–707

    Article  CAS  Google Scholar 

  • Xiao YZ, Chen Q, Wu J et al (2004) Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2. Mycologia 96:26–35

    Article  CAS  Google Scholar 

  • Xiao YZ, Hong YZ, Li JF, Hang J, Tong PG, Fang W, Zhou CZ (2006) Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol 71:493–501

    Article  CAS  Google Scholar 

  • Yaver DS, Golightly EJ (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 181:95–102

    Article  CAS  Google Scholar 

  • Youn HD, Hah YC, Kang SO (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank financial support from Secretaría de Ciencia y Tecnología de la Universidad Nacional de Misiones, through grants for innovation projects (16Q446 and 16Q486). MIF and SSSA have a fellowship for doctoral studies from CONICET, Argentina.

Conflict of interest

All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isabel Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, M.I., Ramos-Hryb, A.B., Fariña, J.I. et al. Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World J Microbiol Biotechnol 30, 2251–2262 (2014). https://doi.org/10.1007/s11274-014-1646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1646-8

Keywords

Navigation