Skip to main content

Advertisement

Log in

Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Characterization of candidate surrogate spores prior to experimental use is critical to confirm that the surrogate characteristics are as closely similar as possible to those of the pathogenic agent of interest. This review compares the physical properties inherent to spores of Bacillus anthracis (Ba) and Bacillus thuringiensis (Bt) that impact their movement in air and interaction with surfaces, including size, shape, density, surface morphology, structure and hydrophobicity. Also evaluated is the impact of irradiation on the physical properties of both Bacillus species. Many physical features of Bt and Ba have been found to be similar and, while Bt is considered typically non-pathogenic, it is in the B. cereus group, as is Ba. When cultured and sporulated under similar conditions, both microorganisms share a similar cylindrical pellet shape, an aerodynamic diameter of approximately 1 μm (in the respirable size range), have an exosporium with a hairy nap, and have higher relative hydrophobicities than other Bacillus species. While spore size, morphology, and other physical properties can vary among strains of the same species, the variations can be due to growth/sporulation conditions and may, therefore, be controlled. Growth and sporulation conditions are likely among the most important factors that influence the representativeness of one species, or preparation, to another. All Bt spores may, therefore, not be representative of all Ba spores. Irradiated spores do not appear to be a good surrogate to predict the behavior of non-irradiated spores due to structural damage caused by the irradiation. While the use of Bt as a surrogate for Ba in aerosol testing appears to be well supported, this review does not attempt to narrow selection between Bt strains. Comparative studies should be performed to test the hypothesis that viable Ba and Bt spores will behave similarly when suspended in the air (as an aerosol) and to compare the known microscale characteristics versus the macroscale response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barfod KK, Poulsen SS, Hammer M, Larsen ST (2010) Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol 10(1):233

    Article  CAS  Google Scholar 

  • Baweja RB, Zaman MS, Mattoo AR, Sharma K, Tripathi V, Aggarwal A, Dubey GP, Kurupati RK, Ganguli M, Chaudhury SS, Das TK, Gade WN, Singh Y (2008) Properties of Bacillus anthracis spores prepared under various environmental conditions. Arch Microbiol 189(1):71–79

    Article  CAS  Google Scholar 

  • Boydston JA, Chen P, Steichen CT, Turnbough Jr CL (2005) Orientation within the exosporium and structural stability of the collagen-Like glycoprotein Bc1A of Bacillus anthracis. J Bacteriol 187(15):5310–5317

    Google Scholar 

  • Brahmbhatt TN, Janes BK, Stibitz ES, Darnell SC, Sanz P, Rasmussen SB, O’Brien AD (2007) Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect Immun 75(11):5233–5239

    Article  CAS  Google Scholar 

  • Branan CR (2005) Estimating equivalent diameters of solids. In: Rules of thumb for chemical engineers. 4th ed Elsevier, Burlington, p 409

  • Buckley P, Rivers B, Katoski S, Kim MH, Kragl FJ, Broomall S, Krepps M, Skowronski EW, Rosenzweig CN, Paikoff S, Emanuel P, Gibbons HS (2012) Genetic barcodes for improved environmental tracking of an anthrax simulant. Appl Environ Microbiol 78(23):8272–8280

    Article  CAS  Google Scholar 

  • Carrera M, Zandomeni RO, Fitzgibbon J, Sagripanti JL (2007) Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J Appl Microbiol 102(2):303–312

    Article  CAS  Google Scholar 

  • Carrera M, Zandomeni RO, Sagripanti JL (2008) Wet and dry density of Bacillus anthracis and other Bacillus species. J Appl Microbiol 105(1):68–77

    Article  CAS  Google Scholar 

  • Chada VG, Sanstad EA, Wang R, Driks A (2003) Morphogenesis of Bacillus spore surfaces. J Bacteriol 185(21):6255–6261

    Article  CAS  Google Scholar 

  • Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S (2010) Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B 76(2):512–518

    Article  CAS  Google Scholar 

  • Dauphin LA, Newton BR, Rasmussen MV, Meyer RF, Bowen MD (2008) Gamma irradiation can be used to inactivate Bacillus anthracis spores without compromising the sensitivity of diagnostic assays. Appl Environ Microbiol 74(14):4427–4433

    Article  CAS  Google Scholar 

  • Doyle RJ, Nedjat-Haiem F, Singh JS (1984) Hydrophobic characteristics of Bacillus spores. Curr Microbiol 10(6):329–332

    Article  CAS  Google Scholar 

  • Emanuel PA, Buckley PE, Sutton TA, Edmonds JM, Bailey AM, Rivers BA, Kim MH, Ginley WJ, Keiser CC, Doherty RW, Kragl FJ, Narayanan FE, Katoski SE, Paikoff S, Leppert SP, Strawbridge JB, VanReenen DR, Biberos SS, Moore D, Phillips DW, Mingioni LR, Melles O, Ondercin DG, Hirsh B, Bieschke KM, Harris CL, Omberg KM, Rastogi VK, Van Cuyk S, Gibbons HS (2012) Detection and tracking of a novel genetically-tagged biological simulant in the environment. Appl Environ Microbiol 78(23):8281–8288

    Article  CAS  Google Scholar 

  • Faille C, Tauveron G, Gentil-Lelievre LC, Slomianny C (2007) Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines. J Food Prot 70(10):2346–2353

    CAS  Google Scholar 

  • Faille C, Lequette Y, Ronse A, Slomianny C, Garénaux E, Guerardel Y (2010) Morphology and physico-chemical properties of Bacillus spores surrounded or not with an exosporium: consequences on their ability to adhere to stainless steel. Int J Food Microbiol 143(3):125–135

    Article  CAS  Google Scholar 

  • Fazzini MM, Schuch R, Fischetti VA (2010) A novel spore protein, ExsM, regulates formation of the exosporium in Bacillus cereus and Bacillus anthracis and affects spore size and shape. J Bacteriol 192(15):4012–4021

    Article  CAS  Google Scholar 

  • Fiester SE, Helfinstine SL, Redfearn JC, Uribe, RM, Woolverton CJ (2012) Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int J Microbiol. doi:10.1155/2012/579593

  • Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, Ryan M, Wang R, Zielke R, Maddock JR, Firedlander A, Welkos S, Driks A (2007) Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189(3):691–705

    Article  CAS  Google Scholar 

  • Giorno R, Mallozzi M, Bozue J, Moody KS, Slack A, Qiu D, Wang R, Friedlander A, Welkos S, Driks A (2009) Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore. Microbiol 155(4):1133–1145

    Google Scholar 

  • Greenberg, D. L., Busch, J. D., Keim, P., and Wagner, D. M. (2010). Identifying experimental surrogates for Bacillus anthracis spores: a review. Investig Genet 1(4)

  • Hachisuka Y, Kozuka S (1981) A new test of differentiation of Bacillus cereus and Bacillus anthracis based on the existence of spore appendages. Microbiol Immunol 25(11):1201–1207

    Article  CAS  Google Scholar 

  • Hachisuka Y, Kozuka S, Tsujikawa M (1984) Exosporia and appendages of spores of Bacillus species. Microbiol Immunol 28(5):619–624

    Article  CAS  Google Scholar 

  • Hart SJ, Terray A, Leski TA, Arnold J, Stroud R (2006) Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Anal Chem 78(9):3221–3225

    Article  CAS  Google Scholar 

  • Hernandez E, Ramisse F, Ducoureau JP, Cruel T, Cavallo JD (1998) Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36(7):2138–2139

    CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York. p. 8, 50, 53, 54 and 141–145

  • Hirota R, Hata Y, Ikeda T, Ishida T, Kuroda A (2010) The silicon layer supports acid resistance of Bacillus cereus spores. J Bacteriol 192(1):111–116

    Article  CAS  Google Scholar 

  • Husmark U, Rönner U (1992) The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 5(4):335–344

    Article  CAS  Google Scholar 

  • Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (1999) Anthrax as a biological weapon. JAMA J Am Med Assoc 281(18):1735–1745

    Article  CAS  Google Scholar 

  • Ji F, Zhu Y, Ju S, Zhang R, Yu Z, Sun M (2009) Promoters of crystal protein genes do not control crystal formation inside exosporium of Bacillus thuringiensis ssp. finitimus strain YBT-020. FEMS Microbiol Lett 300(1):11–17

    Article  CAS  Google Scholar 

  • Kailas L, Terry C, Abbott N, Taylor R, Mullin N, Tzokov SB, Todd SJ, Wallace BA, Hobbs JK, Moir A, Bullough PA (2011) Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc Natl Acad Sci 108(38):16014–16019

    Article  Google Scholar 

  • Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A, Watabe K, Torii M (1989) Surface hydiophobicity of spores of Bacillus spp. J Gen Microbiol 135(10):2717–2722

    CAS  Google Scholar 

  • Laflamme C, Simard JR, Buteau S, Lahaie P, Nadeau D, Déry B, Houle O, Mathieu P, Roy G, Ho J, Duchaine C (2011) Effect of growth media and washing on the spectral signatures of aerosolized biological simulants. Appl Opt 50(6):788–796

    Article  Google Scholar 

  • Leishman ON, Labuza TP, Diez-Gonzalez F (2010) Hydrophobic properties and extraction of Bacillus anthracis spores from liquid foods. Food Microbiol 27(5):661–666

    Article  CAS  Google Scholar 

  • Lequette Y, Garénaux E, Tauveron G, Dumez S, Perchat S, Slomianny C, Lereclus D, Guérardel Y, Faille C (2011) Role played by exosporium glycoproteins in the surface properties of Bacillus cereus spores and in their adhesion to stainless steel. Appl Environ Microbiol 77(14):4905–4911

    Article  CAS  Google Scholar 

  • Logan NA, Berkeley RCW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130(7):1871–1882

    CAS  Google Scholar 

  • Lopez-Meza JE, Ibarra JE (1996) Characterization of a novel strain of Bacillus thuringiensis. Appl Environ Microbiol 62(4):1306–1310

    Google Scholar 

  • Malkin AJ, Plomp M, Leighton TJ, McPherson A, Wheeler KE (2005). Unraveling the architecture and structural dynamics of pathogens by high resolution in vitro atomic force microscopy. Microsc Microanal 32–35

  • Mallozzi M, Bozue J, Giorno R, Moody KS, Slack A, Cote C, Qiu D, Wang R, McKenney P, Lai E, Maddock JR, Friedlander A, Welkos S, Eichenberger P, Driks A (2008) Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology. FEMS Microbiol Lett 289(1):110–117

    Article  CAS  Google Scholar 

  • Mercier-Bonin M, Dehouche A, Morchain J, Schmitz P (2011) Orientation and detachment dynamics of Bacillus spores from stainless steel under controlled shear flow: modelling of the adhesion force. Int J Food Microbiol 146(2):182–191

    Article  CAS  Google Scholar 

  • Phillips AP, Campbell AM, Quinn R (1988) Monoclonal antibodies against spore antigens of Bacillus anthracis. FEMS Microbiol Lett 47(3):169–178

    Article  Google Scholar 

  • Plomp M, Malkin AJ (2008) Mapping of proteomic composition on the surfaces of Bacillus spores by atomic force microscopy-based immunolabeling. Langmuir 25(1):403–409

    Article  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE, Malkin AJ (2005a) Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. Langmuir 21(17):7892–7898

    Article  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE, Malkin AJ (2005b) The high-resolution architecture and structural dynamics of Bacillus spores. Biophys J 88(1):603–608

    Article  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE, Pitesky ME, Malkin AJ (2005c) Bacillus atrophaeus outer spore coat assembly and ultrastructure. Langmuir 21(23):10710–10716

    Article  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE, Hill HD, Malkin AJ (2007) In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc Natl Acad Sci 104(23):9644–9649

    Article  CAS  Google Scholar 

  • Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL (2003) Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 69(5):2755–2764

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms⋆. FEMS Microbiol Rev 29(2):303–329

    CAS  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547

    CAS  Google Scholar 

  • Rönner U, Husmark U, Henriksson A (2008) Adhesion of Bacillus spores in relation to hydrophobicity. J Appl Microbiol 69(4):550–556

    Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9(1):29–33

    Article  CAS  Google Scholar 

  • Samples JR, Buettner H (1983) Ocular infection caused by a biological insecticide. J Infect Dis 148(3):614

    Article  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    Article  CAS  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 77(1):13–21

    Article  CAS  Google Scholar 

  • Sturm R (2012) Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract–A review. J Adv Res 3(4):295–304

    Article  Google Scholar 

  • Sun W, Romagnoli JA, Palazoglu A, Stroeve P (2011) Characterization of surface coats of bacterial spores with atomic force microscopy and wavelets. Ind Eng Chem Res 50(5):2876–2882

    Article  CAS  Google Scholar 

  • Sun S, Fan J, Cheng Z, Cai Y, Li G, Pang Y (2013) The effect of gamma sterilization on the insecticidal toxicity of engineered and conventional Bacillus thuringiensis strains. J Econ Entomol 106(1):36–42

    Article  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45(1):169–178

    Article  CAS  Google Scholar 

  • Tauveron G, Slomianny C, Henry C, Faille C (2006) Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. Int J Food Microbiol 110(3):254–262

    Article  Google Scholar 

  • Van Cuyk S, Deshpande A, Hollander A, Duval N, Ticknor L, Layshock J, Gallegos-Graves L, Omberg KM (2011) Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying. Appl Environ Microbiol 77(22):7954–7961

    Article  CAS  Google Scholar 

  • Westphal AJ, Price PB, Leighton TJ, Wheeler KE (2003) Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci 100(6):3461–3466

    Article  CAS  Google Scholar 

  • Zandomeni RO, Fitzgibbon JE, Carrera M, Stuebing E, Rogers JE, Sagripanti J-L (2003) Spore size comparison between several Bacillus species. Proceedings of the 2003 Joint Service Scientific Conference on Chemical and Biological Defense Research, Towson, MD. DOD publication ECBC-SP-018, Approved for unlimited distribution. Aberdeen Proving Ground, Maryland 21010-5424, September

  • Zolock RA, Li G, Bleckmann C, Burggraf L, Fuller DC (2006) Atomic force microscopy of Bacillus spore surface morphology. Micron 37:363–369

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported in part by an appointment to the Research Participation Program at the National Homeland Security Research Center, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. Additionally, the authors would like to thank Gene Rice (U.S. Environmental Protection Agency, Cincinnati, Ohio), Vipin Rastogi (US Army – ECBC, APG, MD) and Timothy Dean (U.S. Environmental Protection Agency, Research Triangle Park, NC) for their critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Worth Calfee.

Additional information

Disclaimer The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development’s National Homeland Security Research Center, funded, directed and managed this work. This manuscript has been peer and administratively reviewed and has been approved for publication as an EPA document. Note that approval does not signify that the contents necessarily reflect the views of the agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use of a specific product. This review was generated using some references (secondary data) that could not be evaluated for accuracy, precision, representativeness, completeness, or comparability and, therefore, no assurance can be made that the data extracted from these publications meet EPA’s stringent Quality Assurance requirements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufts, J.A.M., Calfee, M.W., Lee, S.D. et al. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research. World J Microbiol Biotechnol 30, 1453–1461 (2014). https://doi.org/10.1007/s11274-013-1576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1576-x

Keywords

Navigation