Skip to main content

Advertisement

Log in

Candida identification: a journey from conventional to molecular methods in medical mycology

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The incidence of Candida infections have increased substantially in recent years due to aggressive use of immunosuppressants among patients. Use of broad-spectrum antibiotics and intravascular catheters in the intensive care unit have also attributed with high risks of candidiasis among immunocompromised patients. Among Candida species, C. albicans accounts for the majority of superficial and systemic infections, usually associated with high morbidity and mortality often caused due to increase in antimicrobial resistance and restricted number of antifungal drugs. Therefore, early detection of candidemia and correct identification of Candida species are indispensable pre-requisites for appropriate therapeutic intervention. Since blood culture based methods lack sensitivity, and species-specific identification by conventional method is time-consuming and often leads to misdiagnosis within closely related species, hence, molecular methods may provide alternative for accurate and rapid identification of Candida species. Although, several molecular approaches have been developed for accurate identification of Candida species but the internal transcribed spacer 1 and 2 (ITS1 and ITS2) regions of the rRNA gene are being used extensively in a variety of formats. Of note, ITS sequencing and PCR–RFLP analysis of ITS region seems to be promising as a rapid, easy, and cost-effective method for identification of Candida species. Here, we review a number of existing techniques ranging from conventional to molecular approaches currently in use for the identification of Candida species. Further, advantages and limitations of these methods are also discussed with respect to their discriminatory power, reproducibility, and ease of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam D (2002) Structured approach bags chemistry prize. Nature 419(6908). doi:10.1038/419659a

  • Akbar DH, Tahawi AT (2001) Candidemia at a university hospital: epidemiology, risk factors and predictors of mortality. Ann Saudi Med 21(3–4):178–182

    CAS  Google Scholar 

  • Alby K, Schaefer D, Bennett RJ (2009) Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460(7257):890–893. doi:10.1038/nature08252

    CAS  Google Scholar 

  • Alexander BD, Pfaller MA (2006) Contemporary tools for the diagnosis and management of invasive mycoses. Clin Infect Dis 43(Suppl 1):S15–S27. doi:10.1086/504491

    CAS  Google Scholar 

  • Al-Hedaithy SSA (2003) The yeast species causing fungemia at a university hospital in Riyadh, Saudi Arabia, during a 10-year period. Mycoses 46(8):275–280. doi:10.1046/j.1439-0507.2003.00893.x

    Google Scholar 

  • Al-Tawfiq JA (2007) Distribution and epidemiology of Candida species causing fungemia at a Saudi Arabian hospital, 1996–2004. Int J Infect Dis 11(3):239–244. doi:10.1016/j.ijid.2006.03.003

    Google Scholar 

  • Alves SH, Milan EP, deLaet Sant’Ana P, Oliveira LO, Santurio JM, Colombo AL (2002) Hypertonic sabouraud broth as a simple and powerful test for Candida dubliniensis screening. Diag Microbiol Infect Dis 43(1):85–86

    CAS  Google Scholar 

  • Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47(2):219–225. doi:10.1021/ac60352a007

    CAS  Google Scholar 

  • Ballard J, Edelman L, Saffle J, Sheridan R, Kagan R, Bracco D, Cancio L, Cairns B, Baker R, Fillari P, Wibbenmeyer L, Voight D, Palmieri T, Greenhalgh D, Kemalyan N, Caruso D (2008) Positive fungal cultures in burn patients: a multicenter review. J Burn Care Res 29(1):213–221. doi:10.1097/BCR.0b013e31815f6ecb

    Google Scholar 

  • Bauters TG, Nelis HJ (2002) Comparison of chromogenic and fluorogenic membrane filtration methods for detection of four candida species. J Clin Microbiol 40(5):1838–1839. doi:10.1128/jcm.40.5.1838-1839.2002

    CAS  Google Scholar 

  • Bodey GP (1966) Fungal infections complicating acute leukemia. J Chronic Dis 19(6):667–687. doi:10.1016/0021-9681(66)90066-x

    CAS  Google Scholar 

  • Botterel F, Desterke C, Costa C, Bretagne S (2001) Analysis of microsatellite markers of Candida albicans used for rapid typing. J Clin Microbiol 39(11):4076–4081. doi:10.1128/jcm.39.11.4076-4081.2001

    CAS  Google Scholar 

  • Bougnoux ME, Morand S, d’Enfert C (2002) Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J Clin Microbiol 40(4):1290–1297

    CAS  Google Scholar 

  • Bougnoux ME, Diogo D, François N, Sendid B, Veirmeire S, Colombel JF, Bouchier C, Van Kruiningen H, d’Enfert C, Poulain D (2006) Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 44(5):1810–1820. doi:10.1128/jcm.44.5.1810-1820.2006

    CAS  Google Scholar 

  • Boyanton BL Jr, Luna RA, Fasciano LR, Menne KG, Versalovic J (2008) DNA pyrosequencing-based identification of pathogenic Candida species by using the internal transcribed spacer 2 region. Archiv Pathol Lab Med 132(4):667–674. doi:10.1043/1543-2165(2008)132[667:dpiopc]2.0.co;2

    Google Scholar 

  • Brawner DL, Cutler JE (1984) Variability in expression of a cell surface determinant on Candida albicans as evidenced by an agglutinating monoclonal antibody. Infect Immun 43(3):966–972

    CAS  Google Scholar 

  • Bretagne S, Costa J-M (2005) Towards a molecular diagnosis of invasive aspergillosis and disseminated candidosis. FEMS Immunol Med Microbiol 45(3):361–368. doi:10.1016/j.femsim.2005.05.012

    CAS  Google Scholar 

  • Bretagne S, Costa JM, Besmond C, Carsique R, Calderone R (1997) Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system. J Clin Microbiol 35(7):1777–1780

    CAS  Google Scholar 

  • Budzikiewicz H, Grigsby RD (2006) Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom Rev 25(1):146–157. doi:10.1002/mas.20061

    CAS  Google Scholar 

  • Burgula Y, Khali D, Kim S, Krishnan S, Cousin M, Gore J, Reuhs B, Mauer L (2007) Review of mid-infrared fourier transform-infrared spectroscopy applications for bacterial detection. J Rapid Methods Autom Microbiol 15(2):146–175. doi:10.1111/j.1745-4581.2007.00078.x

    Google Scholar 

  • Calderone RA (2002) Candida and candidiasis. ASM Press, Washington

    Google Scholar 

  • Cassone A, Torosantucci A, Boccanera M, Pellegrini G, Palma C, Malavasi F (1988) Production and characterisation of a monoclonal antibody to a cell-surface, glucomannoprotein constituent of Candida albicans and other pathogenic Candida species. J Med Microbiol 27(4):233–238

    CAS  Google Scholar 

  • Chang HC, Leaw SN, Huang AH, Wu TL, Chang TC (2001) Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J Clin Microbiol 39(10):3466–3471. doi:10.1128/jcm.39.10.3466-3471.2001

    CAS  Google Scholar 

  • Charles PE, Dalle F, Aube H, Doise JM, Quenot JP, Aho LS, Chavanet P, Blettery B (2005) Candida spp. colonization significance in critically ill medical patients: a prospective study. Intens Care Med 31(3):393–400. doi:10.1007/s00134-005-2571-y

    Google Scholar 

  • Chávez-Galarza J, Pais C, Sampaio P (2010) Microsatellite typing identifies the major clades of the human pathogen Candida albicans. Infect Genet Evol 10(5):697–702. doi:10.1016/j.meegid.2010.03.007

    Google Scholar 

  • Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, Limaye AP, Cookson BT (2000) Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 38(6):2302–2310

    CAS  Google Scholar 

  • Chen Y-C, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39(11):4042–4051. doi:10.1128/jcm.39.11.4042-4051.2001

    CAS  Google Scholar 

  • Chen S, Slavin M, Nguyen Q, Marriott D, Playford EG, Ellis D, Sorrell T (2006) Active surveillance for candidemia, Australia. Emerg Infect Dis 12(10):1508–1516. doi:10.3201/eid1210.060389

    Google Scholar 

  • Chen X, Shi W, Liu P, Xu D, Sun S (2011) Development of molecular assays in the diagnosis of Candida albicans infections. Ann Microbiol 61(3):403–409. doi:10.1007/s13213-010-0169-2

    CAS  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14(11):1584–1586. doi:10.1038/nbt1196-1584

    CAS  Google Scholar 

  • Cochran A, Morris SE, Edelman LS, Saffle JR (2002) Systemic Candida infection in burn patients: a case-control study of management patterns and outcomes. Surg Infect 3(4):367–374. doi:10.1089/109629602762539580

    Google Scholar 

  • Coignard C, Hurst SF, Benjamin LE, Brandt ME, Warnock DW, Morrison CJ (2004) Resolution of discrepant results for candida species identification by using DNA probes. J Clin Microbiol 42(2):858–861. doi:10.1128/jcm.42.2.858-861.2004

    CAS  Google Scholar 

  • Costa SO, Brancocde L (1964) Evaluation of a molybdenum culture medium as selective and differential for yeasts. J Pathol Bacteriol 87:428–431

    CAS  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida Albicans. Annu Rev Microbiol 45(1):187–218. doi:10.1146/annurev.mi.45.100191.001155

    CAS  Google Scholar 

  • delPilar Vercher M, García Martínez JM, Cantón E, Pemán J, Gómez García MM, Gómez EV, del Castillo Agudo L (2011) Differentiation of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis by specific PCR amplification of the RPS0 intron. Int J Med Microbiol 301(6):531–535. doi:10.1016/j.ijmm.2011.02.001

    CAS  Google Scholar 

  • Demidov VV, Potaman VN, Frank-Kamenetskil MD, Egholm M, Buchard O, Sönnichsen SH, Nlelsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48(6):1310–1313. doi:10.1016/0006-2952(94)90171-6

    CAS  Google Scholar 

  • Demirev PA, Ho Y-P, Ryzhov V, Fenselau C (1999) Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71(14):2732–2738. doi:10.1021/ac990165u

    CAS  Google Scholar 

  • Dominique Toubas ME (2007) FTIR spectroscopy in medical mycology: applications to the differentiation and typing of Candida. Anal Bioanal Chem 387(5):1729–1737. doi:10.1007/s00216-006-1005-1

    Google Scholar 

  • Eggimann P, Garbino J, Pittet D (2003a) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3(11):685–702. doi:10.1016/s1473-3099(03)00801-6

    Google Scholar 

  • Eggimann P, Garbino J, Pittet D (2003b) Management of Candida species infections in critically ill patients. Lancet Infect Dis 3(12):772–785

    CAS  Google Scholar 

  • Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446):566–568. doi:10.1038/365566a0

    CAS  Google Scholar 

  • Einsele H, Hebart H, Roller G, Löffler J, Rothenhofer I, Müller CA, Bowden RA, Burik J, Engelhard D, Kanz L, Schumacher U (1997) Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 35(6):1353–1360

    CAS  Google Scholar 

  • Elie CM, Lott TJ, Reiss E, Morrison CJ (1998) Rapid identification of candida species with species-specific DNA probes. J Clin Microbiol 36(11):3260–3265

    CAS  Google Scholar 

  • Essendoubi M, Toubas D, Bouzaggou M, Pinon J-M, Manfait M, Sockalingum GD (2005) Rapid identification of Candida species by FT-IR microspectroscopy. Biochim Biophys Acta 1724(3):239–247. doi:10.1016/j.bbagen.2005.04.019

    CAS  Google Scholar 

  • Falagas ME, Roussos N, Vardakas KZ (2010) Relative frequency of albicans and the various non-albicans Candida spp. among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis 14(11):e954–e966. doi:10.1016/j.ijid.2010.04.006

    Google Scholar 

  • Fenn JP, Segal H, Blevins L, Fawson S, Newcomb-Gayman P, Carroll KC (1996) Comparison of the Murex, Candida albicans CA50 test with germ tube production for identification of C. albicans. Diagn Microbiol Infect Dis 24(1):31–35

    CAS  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171. doi:10.1002/mas.10004

    CAS  Google Scholar 

  • Ferreira AV, Prado CG, Carvalho RR, Dias KST, Dias ALT (2013) Candida albicans and Non-C. albicans Candida Species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia 175(3–4):265–272. doi:10.1007/s11046-013-9638-z

    CAS  Google Scholar 

  • Fluit AC, Jones ME, Schmitz F-J, Acar J, Gupta R, Verhoef J (2000) Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis 30(3):454–460. doi:10.1086/313710

    CAS  Google Scholar 

  • Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, Venezia RA (2006) Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol 44(9):3381–3383. doi:10.1128/jcm.00751-06

    CAS  Google Scholar 

  • Frutos RdL, Fernández MT, Querol A (2004) Identification of species of the genus Candida by analysis of the and the two ribosomal internal transcribed spacers. Antonie Van Leeuwenhoek 85(3):175–185. doi:10.1023/B:ANTO.0000020154.56649.0f

    Google Scholar 

  • Garcia-Hermoso D, Cabaret O, Lecellier G, Desnos-Ollivier M, Hoinard D, Raoux D, Costa J-M, Dromer F, Bretagne S (2007) Comparison of microsatellite length polymorphism and multilocus sequence typing for DNA-Based typing of Candida albicans. J Clin Microbiol 45(12):3958–3963. doi:10.1128/jcm.01261-07

    CAS  Google Scholar 

  • Ge S-H, Xie J, Xu J, Li J, Li D-M, Zong L–L, Zheng Y-C, Bai F-Y (2012) Prevalence of specific and phylogenetically closely related genotypes in the population of Candida albicans associated with genital candidiasis in China. Fungal Genet Biol 49(1):86–93. doi:10.1016/j.fgb.2011.10.006

    Google Scholar 

  • Gharizadeh B, Norberg E, Löffler J, Jalal S, Tollemar J, Einsele H, Klingspor L, Nyrén P (2004) Identification of medically important fungi by the Pyrosequencing technology. Mycoses 47(1–2):29–33

    CAS  Google Scholar 

  • Gozalbo D, Roig P, Villamón E, Gil ML (2004) Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord 4(2):117–135

    CAS  Google Scholar 

  • Gudlaugsson O, Gillespie S, Lee K, Berg JV, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, Revisited. Clin Infect Dis 37(9):1172–1177. doi:10.1086/378745

    Google Scholar 

  • Guinet R, Bruneau Marlier H (1991) Rapid detection of Candid albicans by dot enzyme immunoassay. J lmmunoassay 26(225–223):221

    Google Scholar 

  • Hamal P, Hanzen J, Horn F, Trtkova J, Ruskova L, Vecerova R, Ruzicka F, Vollekova A, Raclavsky V (2011) Usefulness of McRAPD for typing and importance of biofilm production in a case of nosocomial ventriculoperitoneal shunt infection caused by Candida lusitaniae. Folia Microbiol (Praha) 56(5):407–414. doi:10.1007/s12223-011-0063-8

    CAS  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc., Massachusetts

    Google Scholar 

  • Herendael BHV, Bruynseels P, Bensaid M, Boekhout T, Baere TD, Surmont I, Mertens AH (2012) Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis 31(5):841–848. doi:10.1007/s10096-011-1383-y

    CAS  Google Scholar 

  • Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. In: James AM (ed) Methods in enzymology, vol 193. Academic Press, Waltham, pp 280–295

    Google Scholar 

  • Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ (2005) Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J Clin Microbiol 43(5):2092–2103. doi:10.1128/jcm.43.5.2092-2103.2005

    CAS  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(10):1227–1232. doi:10.1002/(sici)1097-0231(19960731)10:10<1227:aid-rcm659>3.0.co;2-6

    CAS  Google Scholar 

  • Hopwood V, Poulain D, Fortier B, Evans G, Vernes A (1986) A monoclonal antibody to a cell wall component of Candida albicans. Infect Immun 54(1):222–227

    CAS  Google Scholar 

  • Horvath EE, Murray CK, Vaughan GM, Chung KK, Hospenthal DR, Wade CE, Holcomb JB, Wolf SE, Mason AD Jr, Cancio LC (2007) Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg 245(6):978–985. doi:10.1097/01.sla.0000256914.16754.80

    Google Scholar 

  • Igloi GL (1999) Automated detection of point mutations by electrophoresis in peptide-nucleic acid-containing gels. Biotechniques 27:798–808

    CAS  Google Scholar 

  • Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40(1):87–109

    CAS  Google Scholar 

  • Jain P, Khan ZK, Bhattacharya E, Ranade SA (2001) Variation in random amplified polymorphic DNA (RAPD) profiles specific to fluconazole-resistant and -sensitive strains of Candida albicans. Diagn Microbiol Infect Dis 41(3):113–119. doi:10.1016/s0732-8893(01)00292-9

    CAS  Google Scholar 

  • Just T, Burgwald H, Broe MK (1998) Flow cytometric detection of EBV (EBER snRNA) using peptide nucleic acid probes. J Virol Methods 73(2):163–174. doi:10.1016/s0166-0934(98)00058-5

    CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301. doi:10.1021/ac00171a028

    CAS  Google Scholar 

  • Krishnamurthy T, Rajamani U, Ross PL (1996) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(8):883–888. doi:10.1002/(sici)1097-0231(19960610)10:8<883:aid-rcm594>3.0.co;2-v

    CAS  Google Scholar 

  • Laupland KB, Gregson DB, Church DL, Ross T, Elsayed S (2005) Invasive Candida species infections: a 5 year population-based assessment. J Antimicrob Chemotherapy 56(3):532–537. doi:10.1093/jac/dki258

    CAS  Google Scholar 

  • Leaw SN, Chang HC, Sun HF, Barton R, Bouchara J-P, Chang TC (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44(3):693–699. doi:10.1128/jcm.44.3.693-699.2006

    CAS  Google Scholar 

  • Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY (1997) Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 7(8):539–546. doi:10.1016/s0960-9822(06)00252-1

    CAS  Google Scholar 

  • Lemmen SW, Häfner H, Kotterik S, Lütticken R, Töpper R (2000) Influence of an infectious disease service on antibiotic prescription behavior and selection of multiresistant pathogens. Infection 28(6):384–387

    CAS  Google Scholar 

  • Letscher-Bru V, Meyer M-H, Galoisy A-C, Waller J, Candolfi E (2002) Prospective evaluation of the new chromogenic medium candida ID, in comparison with candiselect, for isolation of molds and isolation and presumptive identification of yeast species. J Clin Microbiol 40(4):1508–1510. doi:10.1128/jcm.40.4.1508-1510.2002

    Google Scholar 

  • Lewis JK, Wei J, Siuzdak G (2000) Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 5880–5894

    Google Scholar 

  • Li YL, Leaw SN, Chen JH, Chang HC, Chang TC (2003) Rapid identification of yeasts commonly found in positive blood cultures by amplification of the internal transcribed spacer regions 1 and 2. Eur J Clin Microbiol Infect Dis 22(11):693–696. doi:10.1007/s10096-003-1020-5

    CAS  Google Scholar 

  • Lindsley MD, Hurst SF, Iqbal NJ, Morrison CJ (2001) Rapid identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J Clin Microbiol 39(10):3505–3511. doi:10.1128/jcm.39.10.3505-3511.2001

    CAS  Google Scholar 

  • Lipperheide V, Andraka L, Pontón J, Quindós G (1993) Evaluation of the albicans IDR plate method for the rapid identification of Candida albicans. Mycoses 36(11–12):417–420

    CAS  Google Scholar 

  • Lipsett PA (2006) Surgical critical care: fungal infections in surgical patients. Crit Care Med 34(9 Suppl):S215–S224. doi:10.1097/01.ccm.0000231883.93001.e0

    Google Scholar 

  • Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90(5):939–949

    CAS  Google Scholar 

  • Lott TJ, Effat MM (2001) Evidence for a more recently evolved clade within a Candida albicans North American population. Microbiology (Reading, England) 147(Pt 6):1687–1692

    CAS  Google Scholar 

  • Lott TJ, Burns BM, Zancope-Oliveira R, Elie CM, Reiss E (1998) Sequence analysis of the internal transcribed spacer 2 (ITS2) from yeast species within the genus Candida. Curr Microbiol 36(2):63–69

    CAS  Google Scholar 

  • Lunel FV, Licciardello L, Stefani S, Verbrugh HA, Melchers WJ, Meis JF, Scherer S, van Belkum A (1998) Lack of consistent short sequence repeat polymorphisms in genetically homologous colonizing and invasive Candida albicans strains. J Bacteriol 180(15):3771–3778

    CAS  Google Scholar 

  • Luo G, Mitchell TG (2002) Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol 40(8):2860–2865. doi:10.1128/jcm.40.8.2860-2865.2002

    CAS  Google Scholar 

  • Luzzati R, Amalfitano G, Lazzarini L, Soldani F, Bellino S, Solbiati M, Danzi MC, Vento S, Todeschini G, Vivenza C, Concia E (2000) Nosocomial candidemia in non-neutropenic patients at an Italian tertiary care hospital. Eur J Clin Microbiol Infect Dis 19(8):602–607

    CAS  Google Scholar 

  • Majoros L, Kardos G, Belak A, Maraz A, Asztalos L, Csanky E, Barta Z, Szabo B (2003) Restriction enzyme analysis of ribosomal DNA shows that candida inconspicua clinical isolates can be misidentified as Candida norvegensis with Traditional diagnostic procedures. J Clin Microbiol 41(11):5250–5253. doi:10.1128/jcm.41.11.5250-5253.2003

    CAS  Google Scholar 

  • Marchetti O, Bille J, Fluckiger U, Eggimann P, Ruef C, Garbino J, Calandra T, Glauser M-P, Täuber MG, Pittet D (2004) Epidemiology of Candidemia in Swiss Tertiary Care Hospitals: Secular Trends, 1991–2000. Clin Infect Dis 38(3):311–320. doi:10.1086/380637

    Google Scholar 

  • Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26(2):151–159. doi:10.1016/s0924-2031(01)00113-8

    CAS  Google Scholar 

  • Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917. doi:10.1128/jcm.00389-09

    CAS  Google Scholar 

  • Martin MV, White FH (1981) A microbiologic and ultrastructural investigation of germ-tube formation by oral strains of Candida tropicalis. Am J Clin Pathol 75(5):671–676

    CAS  Google Scholar 

  • Martin C, Roberts D, van der Weide M, Rossau R, Jannes G, Smith T, Maher M (2000) Development of a PCR-based line probe assay for identification of fungal pathogens. J Clin Microbiol 38(10):3735–3742

    CAS  Google Scholar 

  • Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA (2009) A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS ONE 4(4):e5039. doi:10.1371/journal.pone.0005039

    Google Scholar 

  • Melo ASA (1998) Evolutionary distances and identification of Candida species in clinical isolates by Randomly Amplified Polymorphic DNA (RAPD). Mycopathologia 142(2):57–66. doi:10.1023/a:1006998325716

    CAS  Google Scholar 

  • Mercure S, Rougeau N, Montplaisir S, Lemay G (1993) Complete nucleotide sequence of Candida albicans 5.8S rRNA coding gene and flanking internal transcribed spacers. Nucleic Acids Res 21(19):4640. doi:10.1093/nar/21.19.4640

    CAS  Google Scholar 

  • Mirhendi H, Bruun B, Schønheyder HC, Christensen JJ, Fuursted K, Gahrn-Hansen B, Johansen HK, Nielsen L, Knudsen JD, Arendrup MC (2011) Differentiation of Candida glabrata, C. nivariensis and C. bracarensis based on fragment length polymorphism of ITS1 and ITS2 and restriction fragment length polymorphism of ITS and D1/D2 regions in rDNA. Eur J Clin Microbiol Infect Dis 30(11):1409–1416. doi:10.1007/s10096-011-1235-9

    CAS  Google Scholar 

  • Myerowitz RL, Pazin GJ, Allen CM (1977) Disseminated candidiasis. Changes in incidence, underlying diseases, and pathology. Am J Clin Pathol 68(1):29–38

    CAS  Google Scholar 

  • Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351(6321):81–82. doi:10.1038/351081a0

    CAS  Google Scholar 

  • Nickersok WJ (1953) Reduction of inorganic substances by yeasts: I. extracellular reduction of sulfite by species of Candida. J Infect Dis 93(1):43–56. doi:10.1093/infdis/93.1.43

    Google Scholar 

  • Nielsen PE, Egholm M, Buchardt O (1994) Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem 5(1):3–7. doi:10.1021/bc00025a001

    CAS  Google Scholar 

  • Noumi E, Snoussi M, Saghrouni F, Ben Said M, Del Castillo L, Valentin E, Bakhrouf A (2009) Molecular typing of clinical Candida strains using random amplified polymorphic DNA and contour-clamped homogenous electric fields electrophoresis. J Appl Microbiol 107(6):1991–2000. doi:10.1111/j.1365-2672.2009.04384.x

    CAS  Google Scholar 

  • Odds FC (1988) Candida and candidosis: a review and bibliography. 2nd edition.x- + 468 pp

  • Odds FC (2010) Molecular phylogenetics and epidemiology of Candida albicans. Future Microbiol 5(1):67–79. doi:10.2217/fmb.09.113

    CAS  Google Scholar 

  • Odds FC, Hanson MF, Davidson AD, Jacobsen MD, Wright P, Whyte JA, Gow NAR, Jones BL (2007) One year prospective survey of Candida bloodstream infections in Scotland. J Med Microbiol 56(8):1066–1075. doi:10.1099/jmm.0.47239-0

    CAS  Google Scholar 

  • Okhravi N, Adamson P, Mant R, Matheson MM, Midgley G, Towler HM, Lightman S (1998) Polymerase chain reaction and restriction fragment length polymorphism mediated detection and speciation of Candida spp. causing intraocular infection. Invest Ophthalmol Vis Sci 39(6):859–866

    CAS  Google Scholar 

  • Pagano J, Levin JD, Trejo W (1957) Diagnostic medium for differentiation of species of Candida. Antibiotics annual 5:137–143

    Google Scholar 

  • Pappas PG (2006) Invasive Candidiasis. Infect Dis Clin North Am 20(3):485–506. doi:10.1016/j.idc.2006.07.004

    Google Scholar 

  • Park S, Wong M, Marras SAE, Cross EW, Kiehn TE, Chaturvedi V, Tyagi S, Perlin DS (2000) Rapid Identification of Candida dubliniensis using a species-specific molecular beacon. J Clin Microbiol 38(8):2829–2836

    CAS  Google Scholar 

  • Patel SJ, Saiman L (2010) Antibiotic resistance in neonatal intensive care unit pathogens: mechanisms, clinical impact, and prevention including antibiotic stewardship. Clin Perinatol 37(3):547–563. doi:10.1016/j.clp.2010.06.004

    Google Scholar 

  • Perry JL, Miller GR (1987) Umbelliferyl-labeled galactosaminide as an aid in identification of Candida albicans. J Clin Microbiol 25(12):2424–2425

    CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42(10):4419–4431. doi:10.1128/jcm.42.10.4419-4431.2004

    CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163. doi:10.1128/cmr.00029-06

    CAS  Google Scholar 

  • Polonelli L, Morace G (1986) Specific and common antigenic determinants of Candida albicans isolates detected by monoclonal antibody. J Clin Microbiol 23(2):366–368

    CAS  Google Scholar 

  • Ponton J, Moragues M, Quindos G (eds) (2002) Non-culture-based diagnostics. Candida and candidiasis. ASM Press, Washington

    Google Scholar 

  • Quiles-Melero I, García-Rodríguez J, Gómez-López A, Mingorance J (2012) Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis 31(1):67–71. doi:10.1007/s10096-011-1277-z

    CAS  Google Scholar 

  • Ray A, Nordén B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14(9):1041–1060

    CAS  Google Scholar 

  • Reef SE, Lasker BA, Butcher DS, McNeil MM, Pruitt R, Keyserling H, Jarvis WR (1998) Nonperinatal nosocomial transmission of Candida albicans in a neonatal intensive care unit: prospective study. J Clin Microbiol 36(5):1255–1259

    CAS  Google Scholar 

  • Rigby S, Procop GW, Haase G, Wilson D, Hall G, Kurtzman C, Oliveira K, Oy SV, Hyldig-Nielsen JJ, Coull J, Stender H (2002) Fluorescence In situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40(6):2182–2186. doi:10.1128/jcm.40.6.2182-2186.2002

    CAS  Google Scholar 

  • Ruhnke M, Maschmeyer G (2002) Management of mycoses in patients with hematologic disease and cancer—review of the literature. Eur J Med Res 7(5):227–235

    Google Scholar 

  • Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73(4):746–750. doi:10.1021/ac0008791

    CAS  Google Scholar 

  • Sabino R, Sampaio P, Carneiro C, Rosado L, Pais C (2011) Isolates from hospital environments are the most virulent of the Candida parapsilosis complex. BMC Microbiol 11(1). doi:10.1186/1471-2180-11-180

  • Salkin IF, Land GA, Hurd NJ, Goldson PR, McGinnis MR (1987) Evaluation of YeastIdent and Uni-Yeast-Tek yeast identification systems. J Clin Microbiol 25(4):624–627

    CAS  Google Scholar 

  • Sampaio P, Gusmão L, Alves C, Pina-Vaz C, Amorim A, Pais C (2003) Highly polymorphic microsatellite for identification of Candida albicans strains. J Clin Microbiol 41(2):552–557. doi:10.1128/jcm.41.2.552-557.2003

    CAS  Google Scholar 

  • Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C, Jaussaud M, Leon A, Pinon JM, Manfait M, Toubas D (2003) Use of fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41(3):954–959. doi:10.1128/jcm.41.3.954-959.2003

    CAS  Google Scholar 

  • Schabereiter-Gurtner C, Selitsch B, Rotter ML, Hirschl AM, Willinger B (2007) Development of novel real-time pcr assays for detection and differentiation of eleven medically important aspergillus and candida species in clinical specimens. J Clin Microbiol 45(3):906–914. doi:10.1128/jcm.01344-06

    CAS  Google Scholar 

  • Schelenz S (2008) Management of candidiasis in the intensive care unit. J Antimicrob Chemother 61(Supplement 1):i31–i34. doi:10.1093/jac/dkm430

    CAS  Google Scholar 

  • Schmid J, Voss E, Soll DR (1990) Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol 28(6):1236–1243

    CAS  Google Scholar 

  • Schmid J, Odds FC, Wiselka MJ, Nicholson KG, Soll DR (1992) Genetic similarity and maintenance of Candida albicans strains from a group of AIDS patients, demonstrated by DNA fingerprinting. J Clin Microbiol 30(4):935–941

    CAS  Google Scholar 

  • Schmid J, Tay YP, Wan L, Carr M, Parr D, McKinney W (1995) Evidence for nosocomial transmission of Candida albicans obtained by Ca3 fingerprinting. J Clin Microbiol 33(5):1223–1230

    CAS  Google Scholar 

  • Schulze J, Sonnenborn U (2009) Yeasts in the Gut: from commensals to infectious agents. Deutsches Arzteblatt International 106(51–52):837–842. doi:10.3238/arztebl2009.0837

    Google Scholar 

  • Sexton JA, Brown V, Johnston M (2007) Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor. Yeast 24(10):847–860. doi:10.1002/yea.1514

    CAS  Google Scholar 

  • Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, Hall G, Johnson JK, Merz WG, Peltroche-Llacsahuanga H, Stender H, Venezia RA, Wilson D, Procop GW, Wu F, Fiandaca MJ (2008) Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 46(1):50–55. doi:10.1128/jcm.01385-07

    CAS  Google Scholar 

  • Shinoda T, Kaufman L, Padhye AA (1981) Comparative evaluation of the Iatron serological Candida check kit and the API 20C kit for identification of medically important Candida species. J Clin Microbiol 13(3):513–518

    CAS  Google Scholar 

  • Shokohi T, Hashemi Soteh MB, Saltanat Pouri Z, Hedayati MT, Mayahi S (2010) Identification of Candida species using PCR-RFLP in cancer patients in Iran. Indian J Med Microbiol 28(2):147–151. doi:10.4103/0255-0857.62493

    CAS  Google Scholar 

  • Slavin M, Fastenau J, Sukarom I, Mavros P, Crowley S, Gerth WC (2004) Burden of hospitalization of patients with Candida and Aspergillus infections in Australia. Int J Infect Dis 8(2):111–120

    Google Scholar 

  • Sobel JD (1997) Vaginitis. N Engl J Med 337(26):1896–1903. doi:10.1056/nejm199712253372607

    CAS  Google Scholar 

  • Soll DR, Staebell M, Langtimm C, Pfaller M, Hicks J, Rao TV (1988) Multiple Candida strains in the course of a single systemic infection. J Clin Microbiol 26(8):1448–1459

    CAS  Google Scholar 

  • Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sørensen D, Broomer A, Oliveira K, Perry-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis(Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67(2):938–941. doi:10.1128/aem.67.2.938-941.2001

    CAS  Google Scholar 

  • Stevens DA (2002) Diagnosis of fungal infections: current status. Antimicrob Chemotherapy 49:11–19

    CAS  Google Scholar 

  • Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC (1995) Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology (Reading, England) 141(Pt 7):1507–1521

    Google Scholar 

  • Taguchi M, Tsukiji M, Tsuchiya T (1979) Rapid identification of yeasts by serological methods: a combined serological and biological method. Sabouraudia 17(3):185–191

    CAS  Google Scholar 

  • Taneja KL, Chavez EA, Coull J, Lansdorp PM (2001) Multicolor fluorescence in situ hybridization with peptide nucleic acid probes for enumeration of specific chromosomes in human cells. Genes Chromosomes Cancer 30(1):57–63

    CAS  Google Scholar 

  • Taschdjian CL, Seelig MS, Kozinn PJ (1973) Serological diagnosis of candidal infections. Crit Rev Clin Lab Sci 4(1):19–59. doi:10.3109/10408367309151683

    CAS  Google Scholar 

  • Tavanti A, Davidson AD, Johnson EM, Maiden MCJ, Shaw DJ, Gow NAR, Odds FC (2005) Multilocus sequence typing for differentiation of strains of Candida tropicalis. J Clin Microbiol 43(11):5593–5600. doi:10.1128/jcm.43.11.5593-5600.2005

    CAS  Google Scholar 

  • Thisted M, Just T, Pluzek K, Hyldig-Nielsen J, Nielsen K, Mollerup T, Stender H, Rasmussen O, K A, Godtfredsen S (1999) Application of peptide nucleic acid probes for in situ hybridization. Peptide Nucleic Acids: Protocols and Application. Horizon Scientific Press, Wymondham, UK

  • Trost A, Graf B, Eucker J, Sezer O, Possinger K, Göbel UB, Adam T (2004) Identification of clinically relevant yeasts by PCR/RFLP. J Microbiol Methods 56(2):201–211

    CAS  Google Scholar 

  • Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol 37(6):1846–1851

    CAS  Google Scholar 

  • van Belkum A (1999) The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 2(3):306–311. doi:10.1016/s1369-5274(99)80053-8

    Google Scholar 

  • Veen SQv, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907. doi:10.1128/jcm.02071-09

    Google Scholar 

  • Vijayakumar R, Giri S, Kindo A (2012) Molecular species identification of candida from blood samples of intensive care unit patients by polymerase chain reaction: restricted fragment length polymorphism. J Lab Phys 4(1):1. doi:10.4103/0974-2727.98661

    CAS  Google Scholar 

  • Vinsonneau C, Benyamina M, Baixench MT, Stephanazzi J, Augris C, Grabar S, Paugam A, Wassermann D (2009) Effects of candidaemia on outcome of burns. Burns 35(4):561–564. doi:10.1016/j.burns.2008.05.028

    Google Scholar 

  • Wahyuningsih R, Freisleben H-J, Sonntag H-G, Schnitzler P (2000a) Simple and rapid detection of Candida albicans DNA in Serum by PCR for diagnosis of invasive candidiasis. J Clin Microbiol 38(8):3016–3021

    CAS  Google Scholar 

  • Wahyuningsih R, Freisleben HJ, Sonntag HG, Schnitzler P (2000b) Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J Clin Microbiol 38(8):3016–3021

    CAS  Google Scholar 

  • White PL, Shetty A, Barnes RA (2003) Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 52(3):229–238. doi:10.1099/jmm.0.05049-0

    Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 Cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317. doi:10.1086/421946

    Google Scholar 

  • Xu H, Liu M, Chen Y, Huang J, Xu C, Lu L (2012) Randomly amplified polymorphic deoxyribonucleic acid (DNA) analysis of Candida albicans isolates from clinical sources of hospital in south China. Afr J Microbiol Res 6(10):2552–2558

    CAS  Google Scholar 

  • Yeo SF, Wong B (2002) Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev 15(3):465–484. doi:10.1128/cmr.15.3.465-484.2002

    Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11(1):1–16

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Mr. Mohammad S. Gazdar, Librarian, KFMRC, for providing assistance in retrieving research articles from journals available in the library and as well from different web resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Absarul Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.Z., Alam, Q., Jiman-Fatani, A. et al. Candida identification: a journey from conventional to molecular methods in medical mycology. World J Microbiol Biotechnol 30, 1437–1451 (2014). https://doi.org/10.1007/s11274-013-1574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1574-z

Keywords

Navigation