Skip to main content

Advertisement

Log in

Detection of Cryptic Candida Species Recognized as Human Pathogens Through Molecular Biology Techniques

  • Clinical Mycology Lab Issues (S Córdoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to evaluate these molecular-based methods able to identify pathogenic cryptic Candida spp. focusing on those that demonstrated to be useful in clinical laboratory settings.

Recent Findings

It is long known that some Candida spp. are genetically heterogeneous. Firstly, individual species were divided into groups based on differences on the sequence of some genes. Later, those groups were designated as cryptic species and defined as phenotypically indistinguishable species that are only identified by their DNA sequences. Many common Candida spp. are now considered complexes formed by several cryptic species. Some of them have been recognized as human pathogens. The identification of these species is problematic but necessary since they have different host range, infection sites, infection severity, and antifungal susceptibility. Several independent DNA markers were proposed as tools for the differentiation of highly related species. We will concentrate on the three species complexes most frequently associated with human infections including Candida albicans, C. glabrata, and C. parapsilosis complexes and a fourth group of less common but multiresistant species including C. haeumulonii complex and C. auris.

Summary

We review the clinically useful molecular tools able to differentiate the cryptic species of C. albicans, C. glabrata, and C. parapsilosis complexes and designated to uncover emerging multiresistant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: Of importance •• Of major importance

  1. Alcoba-Florez J, Mendez-Alvarez S, Cano J, Guarro J, Perez-Roth E, del Pilar AM. Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible new opportunistic fungus. J Clin Microbiol. 2005;43:4107–11.

  2. Cassone A, De BF, Pontieri E, Carruba G, Girmenia C, Martino P, et al. Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis. 1995;171:967–75.

  3. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology. 1995;141(Pt 7):1507–21.

  4. Brandt ME, Lockhart SR. Recent taxonomic developments with Candida and other opportunistic yeasts. Curr Fungal Infect Rep. 2012;6:170–7.

  5. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP. The yeasts: a taxonomic study, 5th edition. Kurtzman CP, Fell JW, Boekhout T (eds.). London: Elsevier; 2013.

  6. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

  7. Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992-1993: results of population-based laboratory active surveillance. Clin Infect Dis. 1998;27:1138–47.

  8. Arendrup MC. Epidemiology of invasive candidiasis. Curr Opin Crit Care. 2010;16:445–52.

  9. Cleveland AA, Harrison LH, Farley MM, Hollick R, Stein B, Chiller TM, et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance. PLoS One. 2015;10:e0120452.

  10. Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43:284–92.

  11. Lamoth F. Aspergillus fumigatus-related species in clinical practice. Front Microbiol. 2016;7:683.

  12. •• Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015;53:1823–30. This paper highlights that ITS sequencing and MALDI-TOF are the only thruthworsty method to identify Candida auris.

  13. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell. 2005;4:625–32.

  14. Gacser A, Schafer W, Nosanchuk JS, Salomon S, Nosanchuk JD. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol. 2007;44:1336–41.

  15. • Gago S, Garcia-Rodas R, Cuesta I, Mellado E, Alastruey-Izquierdo A. Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis virulence in the non-conventional host Galleria mellonella. Virulence. 2014;5:278–85. This work demonstrates that C. metapsilosis is the less virulent species of the C. parapsilosis complex.

  16. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.

  17. Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother. 2011;55:4802–9.

  18. Romeo O, Criseo G. Candida africana and its closest relatives. Mycoses. 2011;54:475–86.

  19. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31:21–32.

  20. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109:6241–6.

  21. •• Balasundaram SV, Engh IB, Skrede I, Kauserud H. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biol. 2015;119:940–5. Describes that ITS sequencing (DNA barcode) plus few independent DNA loci may be enough to detect cryptic species in morphologically defined species. Also, the same markers would give a correct identification of cryptic species.

  22. Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9:e1003550.

  23. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017;23:195–203.

  24. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, et al. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol. 2012;50:3641–51.

  25. Rodero L, Cuenca-Estrella M, Cordoba S, Cahn P, Davel G, Kaufman S, et al. Transient fungemia caused by an amphotericin B-resistant isolate of Candida haemulonii. J Clin Microbiol. 2002;40:2266–9.

  26. Odds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, et al. Molecular phylogenetics of Candida albicans. Eukaryot Cell. 2007;6:1041–52.

  27. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MS, Samad S, et al. Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology. 1999;145(Pt 9):2405–13.

  28. Tietz HJ, Kussner A, Thanos M, De Andrade MP, Presber W, Schonian G. Phenotypic and genotypic characterization of unusual vaginal isolates of Candida albicans from Africa. J Clin Microbiol. 1995;33:2462–5.

  29. Jacobsen MD, Boekhout T, Odds FC. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea. FEMS Yeast Res. 2008;8:764–70.

  30. Theill L, Dudiuk C, Morano S, Gamarra S, Nardin ME, Mendez E, et al. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina. Rev Argent Microbiol. 2016;48:43–9.

  31. Moran GP, Sullivan DJ, Henman MC, McCreary CE, Harrington BJ, Shanley DB, et al. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob Agents Chemother. 1997;41:617–23.

  32. Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC. Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother. 1998;42:1819–30.

  33. Pinjon E, Jackson CJ, Kelly SL, Sanglard D, Moran G, Coleman DC, et al. Reduced azole susceptibility in genotype 3 Candida dubliniensis isolates associated with increased CdCDR1 and CdCDR2 expression. Antimicrob Agents Chemother. 2005;49:1312–8.

  34. Wirsching S, Moran GP, Sullivan DJ, Coleman DC, Morschhauser J. MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother. 2001;45:3416–21.

  35. Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjaeldgaard P, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol. 2011;49:325–34.

  36. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010;48:1366–77.

  37. Borman AM, Szekely A, Linton CJ, Palmer MD, Brown P, Johnson EM. Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom. J Clin Microbiol. 2013;51:967–72.

  38. Lockhart SR. Do hospital microbiology laboratories still need to distinguish Candida albicans from Candida dubliniensis? J Clin Microbiol. 2011;49:4415.

  39. Kirkpatrick WR, Revankar SG, McAtee RK, Lopez-Ribot JL, Fothergill AW, McCarthy DI, et al. Detection of Candida dubliniensis in oropharyngeal samples from human immunodeficiency virus-infected patients in North America by primary CHROMagar candida screening and susceptibility testing of isolates. J Clin Microbiol. 1998;36:3007–12.

  40. Meyer W, Maszewska K, Sorrell TC. PCR fingerprinting: a convenient molecular tool to distinguish between Candida dubliniensis and Candida albicans. Med Mycol. 2001;39:185–93.

  41. Biswas SK, Yokoyama K, Wang L, Nishimura K, Miyaji M. Identification of Candida dubliniensis based on the specific amplification of mitochondrial cytochrome b gene. Nihon Ishinkin Gakkai Zasshi. 2001;42:95–8.

  42. Donnelly SM, Sullivan DJ, Shanley DB, Coleman DC. Phylogenetic analysis and rapid identification of Candida dubliniensis based on analysis of ACT1 intron and exon sequences. Microbiology. 1999;145(Pt 8):1871–82.

  43. Gamarra S, Dudiuk C, Mancilla E, Vera Garate MV, Guerrero S, Garcia-Effron G. Molecular tools for cryptic Candida species identification with applications in a clinical laboratory. Biochem Mol Biol Educ. 2013;41:180–6.

  44. Romeo O, Criseo G. First molecular method for discriminating between Candida africana, Candida albicans, and Candida dubliniensis by using hwp1 gene. Diagn Microbiol Infect Dis. 2008;62:230–3.

  45. Gumral R, Sancak B, Guzel AB, Saracli MA, Ilkit M. Lack of Candida africana and Candida dubliniensis in vaginal Candida albicans isolates in Turkey using HWP1 gene polymorphisms. Mycopathologia. 2011;172:73–6.

  46. Ngouana TK, Krasteva D, Drakulovski P, Toghueo RK, Kouanfack C, Ambe A, et al. Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaounde (Cameroon) HIV-infected patients. Mycoses. 2015;58:33–9.

  47. Nnadi NE, Ayanbimpe GM, Scordino F, Okolo MO, Enweani IB, Criseo G, et al. Isolation and molecular characterization of Candida africana from Jos, Nigeria. Med Mycol. 2012;50:765–7.

  48. Lehmann PF, Lin D, Lasker BA. Genotypic identification and characterization of species and strains within the genus Candida by using random amplified polymorphic DNA. J Clin Microbiol. 1992;30:3249–54.

  49. Lin D, Wu LC, Rinaldi MG, Lehmann PF. Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol. 1995;33:1815–21.

  50. Nosek J, Tomaska L, Rycovska A, Fukuhara H. Mitochondrial telomeres as molecular markers for identification of the opportunistic yeast pathogen Candida parapsilosis. J Clin Microbiol. 2002;40:1283–9.

  51. Roy B, Meyer SA. Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J Clin Microbiol. 1998;36:216–8.

  52. • Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl JMed. 2015;373:1445–56. It is one of the newest and more complete reviews about Invasive candidiasis epidemiology

  53. Garcia-Effron G, Canton E, Peman J, Dilger A, Roma E, Perlin DS. Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital. J Antimicrob Chemother. 2012;67:2739–48.

  54. Cordoba S, Vivot W, Bosco-Borgeat ME, Taverna C, Szusz W, Murisengo O, et al. Species distribution and susceptibility profile of yeasts isolated from blood cultures: results of a multicenter active laboratory-based surveillance study in Argentina. Rev Argent Microbiol. 2011;43:176–85.

  55. Canton E, Espinel-Ingroff A, Peman J, del Castillo L. In vitro fungicidal activities of echinocandins against Candida metapsilosis, C. orthopsilosis, and C. parapsilosis evaluated by time-kill studies. Antimicrob Agents Chemother. 2010;54:2194–7.

  56. Cattana ME, Dudiuk C, Fernandez M, Rojas F, Alegre L, Cordoba S, et al. Identification of Candida parapsilosis sensu lato in pediatric patients and antifungal susceptibility testing. Antimicrob Agents Chemother. 2017;61:e02754.

  57. Lockhart SR, Messer SA, Pfaller MA, Diekema DJ. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J Clin Microbiol. 2008;46:2659–64.

  58. Mirhendi H, Bruun B, Schonheyder HC, Christensen JJ, Fuursted K, Gahrn-Hansen B, et al. Molecular screening for Candida orthopsilosis and Candida metapsilosis among Danish Candida parapsilosis group blood culture isolates: proposal of a new RFLP profile for differentiation. J Med Microbiol. 2010;59:414–20.

  59. Borman AM, Linton CJ, Oliver D, Palmer MD, Szekely A, Odds FC, et al. Pyrosequencing analysis of 20 nucleotides of internal transcribed spacer 2 discriminates Candida parapsilosis, Candida metapsilosis, and Candida orthopsilosis. J Clin Microbiol. 2009;47:2307–10.

  60. Garcia-Effron G, Canton E, Peman J, Dilger A, Roma E, Perlin DS. Assessment of two new molecular methods for identification of Candida parapsilosis sensu lato species. J Clin Microbiol. 2011;49:3257–61.

  61. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press, Inc.; 1990. p. 315–22.

  62. Barbedo LS, Figueiredo-Carvalho MH, Muniz MM, Zancope-Oliveira RM. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA. Mem Inst Oswaldo Cruz. 2016;111:267–70.

  63. Hays C, Duhamel C, Cattoir V, Bonhomme J. Rapid and accurate identification of species belonging to the Candida parapsilosis complex by real-time PCR and melting curve analysis. J Med Microbiol. 2011;60:477–80.

  64. Canton E, Peman J, Quindos G, Eraso E, Miranda-Zapico I, Alvarez M, et al. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother. 2011;55:5590–6.

  65. de Toro M, Torres MJ, Maite R, Aznar J. Characterization of Candida parapsilosis complex isolates. Clin Microbiol Infect. 2011;17:418–24.

  66. Silva AP, Miranda IM, Lisboa C, Pina-Vaz C, Rodrigues AG. Prevalence, distribution, and antifungal susceptibility profiles of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis in a tertiary care hospital. J Clin Microbiol. 2009;47:2392–7.

  67. Neji S, Trabelsi H, Hadrich I, Cheikhrouhou F, Sellami H, Makni F, et al. Molecular study of the Candida parapsilosis complex in Sfax, Tunisia. Med Mycol. 2017;55:137–44.

  68. Feng X, Wu Z, Ling B, Pan S, Liao W, Pan W, et al. Identification and differentiation of Candida parapsilosis complex species by use of exon-primed intron-crossing PCR. J Clin Microbiol. 2014;52:1758–61.

  69. del Pilar V, Garcia Martinez JM, Canton E, Peman J, Gomez Garcia MM, Gomez EV, et al. Differentiation of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis by specific PCR amplification of the RPS0 intron. Int J Med Microbiol. 2011;301:531–5.

  70. Prandini TH, Theodoro RC, Bruder-Nascimento AC, Scheel CM, Bagagli E. Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. J Clin Microbiol. 2013;51:2830–6.

  71. Souza AC, Ferreira RC, Goncalves SS, Quindos G, Eraso E, Bizerra FC, et al. Accurate identification of Candida parapsilosis (sensu lato) by use of mitochondrial DNA and real-time PCR. J Clin Microbiol. 2012;50:2310–4.

  72. De CE, Hensgens LA, Vella A, Posteraro B, Sanguinetti M, Senesi S, et al. Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP. Med Mycol. 2014;52:123–30.

  73. Campa D, Tavanti A, Gemignani F, Mogavero CS, Bellini I, Bottari F, et al. DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J Clin Microbiol. 2008;46:909–15.

  74. Correia A, Sampaio P, James S, Pais C. Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. Int J Syst Evol Microbiol. 2006;56:313–7.

  75. Brockert PJ, Lachke SA, Srikantha T, Pujol C, Galask R, Soll DR. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect Immun. 2003;71:7109–18.

  76. Gabaldon T, Carrete L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res. 2016;16:fov110.

  77. Borman AM, Petch R, Linton CJ, Palmer MD, Bridge PD, Johnson EM. Candida nivariensis, an emerging pathogenic fungus with multidrug resistance to antifungal agents. J Clin Microbiol. 2008;46:933–8.

  78. Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A. 2007;104:7628–33.

  79. Swoboda-Kopec E, Sikora M, Golas M, Piskorska K, Gozdowski D, Netsvyetayeva I. Candida nivariensis in comparison to different phenotypes of Candida glabrata. Mycoses. 2014;57:747–53.

  80. • Gil-Alonso S, Jauregizar N, Canton E, Eraso E, Quindos G. In vitro fungicidal activities of anidulafungin, caspofungin, and micafungin against Candida glabrata, Candida bracarensis, and Candida nivariensis evaluated by time-kill studies. Antimicrob Agents Chemother. 2015;59:3615–8. This work demonstrate that echinocandins are less active against C. nivariensis

  81. Bishop JA, Chase N, Lee R, Kurtzman CP, Merz WG. Production of white colonies on CHROMagar Candida medium by members of the Candida glabrata clade and other species with overlapping phenotypic traits. J Clin Microbiol. 2008;46:3498–500.

  82. Fraser M, Borman AM, Johnson EM. Evaluation of the commercial rapid trehalose test (GLABRATA RTT) for the point of isolation identification of Candida glabrata isolates in primary cultures. Mycopathologia. 2012;173:259–64.

  83. Enache-Angoulvant A, Guitard J, Grenouillet F, Martin T, Durrens P, Fairhead C, et al. Rapid discrimination between Candida glabrata, Candida nivariensis, and Candida bracarensis by use of a singleplex PCR. J Clin Microbiol. 2011;49:3375–9.

  84. Mirhendi H, Bruun B, Schonheyder HC, Christensen JJ, Fuursted K, Gahrn-Hansen B, et al. Differentiation of Candida glabrata, C. nivariensis and C. bracarensis based on fragment length polymorphism of ITS1 and ITS2 and restriction fragment length polymorphism of ITS and D1/D2 regions in rDNA. Eur J Clin Microbiol Infect Dis. 2011;30:1409–16.

  85. Monstein HJ, Tarnberg M, Persis S, Johansson AG. Comparison of a capillary gel electrophoresis-based multiplex PCR assay and ribosomal intergenic transcribed spacer-2 amplicon sequencing for identification of clinically important Candida species. J Microbiol Methods. 2014;96:81–3.

  86. Telleria O, Ezpeleta G, Herrero O, Miranda-Zapico I, Quindos G, Cisterna R. Validation of the PCR-dHPLC method for rapid identification of Candida glabrata phylogenetically related species in different biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;893-894:150–6.

  87. Morales-Lopez SE, Taverna CG, Bosco-Borgeat ME, Maldonado I, Vivot W, Szusz W, et al. Candida glabrata species complex prevalence and antifungal susceptibility testing in a culture collection: first description of Candida nivariensis in Argentina. Mycopathologia. 2016;181:871–8.

  88. Dudiuk C, Morales-Lopez SE, Podesta V, Macedo D, Leonardelli F, Vitale RG, et al. Multiplex PCR designed to differentiate species within the Candida glabrata complex. Rev Iberoam Micol. 2017;34:43–5.

  89. • Morales-Lopez S, Dudiuk C, Vivot W, Szusz W, Cordoba SB, Garcia-Effron G. Phenotypic and molecular evaluation of echinocandin susceptibility of Candida glabrata, Candida bracarensis, and Candida nivariensis strains isolated during 30 years in Argentina. Antimicrob Agents Chemother. 2017;61:e00170. A comparison between phenotypic and molecular echinocandin susceptibility testing in C. glabrata complex.

  90. Lehmann PF, Wu LC, Pruitt WR, Meyer SA, Ahearn DG. Unrelatedness of groups of yeasts within the Candida haemulonii complex. J Clin Microbiol. 1993;31:1683–7.

  91. Sugita T, Takashima M, Poonwan N, Mekha N. Candida pseudohaemulonii Sp. Nov., an amphotericin B-and azole-resistant yeast species, isolated from the blood of a patient from Thailand. Microbiol Immunol. 2006;50:469–73.

  92. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.

  93. Ruiz Gaitan AC, Moret A, Lopez Hontangas JL, Molina JM, Aleixandre Lopez AI, Cabezas AH, et al. Nosocomial fungemia by Candida auris: first four reported cases in continental Europe. Rev Iberoam Micol. 2017;34:23–7.

  94. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, et al. First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol. 2011;49:3139–42.

  95. Kim MN, Shin JH, Sung H, Lee K, Kim EC, Ryoo N, et al. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis. 2009;48:e57–61.

  96. Center for Disease Control and Prevention. Candida auris interim recommendations for healthcare facilities and laboratories. 2016. https://www.cdc.gov/fungal/diseases/candidiasis/recommendations.html.

  97. •• Mizusawa M, Miller H, Green R, Lee R, Durante M, Perkins R, et al. Can multidrug-resistant Candida auris be reliably identified in clinical microbiology laboratories? J Clin Microbiol. 2017;55:638–40. Demonstrate the urgent need of the development of laboratory tools able to identfy C. auris.

  98. •• Theill L., Dudiuk C., Morales-Lopez S., Berrio I, Rodriguez Y, Marin A., Gamarra S., Garcia-Effron G. Single tube classical PCR for Candida auris and C. haemulonii identification. Rev Iberoam Micol 2017, In press. A simple, quick and inexpensive single tube clasical PCR designated to identify C. auris.

  99. Theill L., Dudiuk C., Morales-Lopez S., Gamarra S., Garcia-Effron G. Identificación rápida de C. auris, C. haemulonii y sus especies relacionadas. Congreso de la Sociedad Argentina de Infectología. Resúmenes del Congreso de la Sociedad Argentina de Infectología. 2017.

  100. •• Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlin DS. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris. J Clin Microbiol. 2017;55:2445–52. One of the few tools available to uncover C. auris.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Garcia-Effron.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This review was written with data obtained by studies supported by: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), grant PIP2011/331 to G.G.E. Universidad Nacional del Litoral (UNL), grant (CAI + D) to G.G.E. and S.G. C.D. have a postdoctoral fellowship from CONICET.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudiuk, C., Theill, L., Gamarra, S. et al. Detection of Cryptic Candida Species Recognized as Human Pathogens Through Molecular Biology Techniques. Curr Fungal Infect Rep 11, 176–183 (2017). https://doi.org/10.1007/s12281-017-0294-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-017-0294-5

Keywords

Navigation