Advertisement

World Journal of Microbiology and Biotechnology

, Volume 29, Issue 8, pp 1383–1389 | Cite as

Metal tolerance and larvicidal activity of Lysinibacillus sphaericus

  • Lucía C. Lozano
  • Jenny Dussán
Original Paper

Abstract

Lysinibacillus sphaericus is a spore-forming bacterium used in the biological control of mosquitoes and in bioremediation. Mosquito larvae exposed to heavy metals are tolerant to concentrations above the permissible limit for industrial residual waters. In this work, we characterize 51 L. sphaericus strains for metal tolerance and larvicidal activity against Culex quinquefasciatus. Lysinibacillus sphaericus OT4b.2, OT4b.20, OT4b.25, OT4b.26 and OT4b.58 were as toxic as the spores of the reference strain 2362 against C. quinquefasciatus larvae. 19 Mosquito-pathogenic L. sphaericus strains and 6 non-pathogenic strains were able to grow in arsenate, hexavalent chromium and/or lead. 16S rRNA gene sequences and phylogenetic analyses clustered 84 % of the metal-tolerant strains in L. sphaericus group 1, which encompasses the mosquitocidal strains. The larvicidal activity of vegetative and sporulated cells and its high tolerance to arsenate, hexavalent chromium and lead indicate that L. sphaericus OT4b.26 is a strong candidate for further studies examining its potential for biological control of mosquitoes in waters contaminated with metals.

Keywords

Lysinibacillus sphaericus Heavy metal tolerance Larvicidal activity Phylogeny 

Notes

Acknowledgments

The authors are grateful to Alejandro Acosta for his recommendations on phylogenetic analysis. Reference strains were donated by A. Yousten and A. Delecluse. This work was supported by grants from Colciencias contract RC-295-2008 and the Research Committee of the Science Faculty at the Universidad de los Andes, Colombia.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125. doi: 10.1099/ijs.0.63867-0 CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  3. Baumann P, Clark MA, Baumann L, Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Rev 55(3):425–436Google Scholar
  4. Baxevanis AD, Ouellette BFF (2001) Bioinformatics. A practical guide to the analysis of genes and proteins, 2nd edn. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  5. Biller D, Quintero JD (1995) Policy options to address informal sector contamination in urban Latin America: the case of leather tanneries in Bogota, Colombia. LATEN Dissemination Note # 14. The World BankGoogle Scholar
  6. Chenniappan K, Ayyadurai N (2012) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110(1):381–388. doi: 10.1007/s00436-011-2502-5 CrossRefGoogle Scholar
  7. Desai C, Jain K, Madamwar D (2008) Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour Technol 99(14):6059–6069. doi: 10.1016/j.biortech.2007.12.046 CrossRefGoogle Scholar
  8. Dussán J, Andrade D, Lozano L, Vanegas S (2002) Caracterización fisiológica y genética de cepas nativas de Bacillus sphaericus. Rev Colomb Biotecnol 4:89–99Google Scholar
  9. Fox JG, Yan LL, Dewhirst FE, Paster BJ, Shames B, Murphy JC, Hayward A, Belcher JC, Mendes EN (1995) Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol 33(2):445–454Google Scholar
  10. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140. doi: 10.1016/j.jtemb.2005.02.010 CrossRefGoogle Scholar
  11. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263–283CrossRefGoogle Scholar
  12. Lozano LC, Dussán J (2002) Diferenciación de aislamientos colombianos de Bacillus sphaericus patogenos y no patogenos para larvas de mosquitos por amplificacion azarosa del ADN. Actual Biol 24(77):113–121Google Scholar
  13. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Kumar Y, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371. doi: 10.1093/nar/gkh29332/4/1363
  14. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162(1):328–334Google Scholar
  15. Mireji PO, Keating J, Hassanali A, Mbogo CM, Nyambaka H, Kahindi S, Beier JC (2008) Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol Environ Saf 70(1):147–153. doi: 10.1016/j.ecoenv.2007.03.012 CrossRefGoogle Scholar
  16. Miwa H, Ahmed I, Yokota A, Fujiwara T (2009) Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 59 (Pt 6):1427–1432. doi: 10.1099/ijs.0.65455-0 CrossRefGoogle Scholar
  17. Morgan BJT (1992) Análisis of quantal response data. Cahpman & Hall, LondonGoogle Scholar
  18. Nakamura LK (2000) Phylogeny of Bacillus sphaericus-like organisms. Int J Syst Evol Microbiol 50:1715–1722Google Scholar
  19. Nielsen-LeRoux C, Rao DR, Murphy JR, Carron A, Mani TR, Hamon S, Mulla MS (2001) Various levels of cross-resistance to Bacillus sphaericus strains in Culex pipiens (Diptera: Culicidae) colonies resistant to B. sphaericus strain 2362. Appl Environ Microbiol 67(11):5049–5054. doi: 10.1128/AEM.67.11.5049-5054.2001 CrossRefGoogle Scholar
  20. Pal A, Paul AK (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res 159(4):347–354CrossRefGoogle Scholar
  21. Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57(4):838–861Google Scholar
  22. Selenska-Pobell S, Panak P, Miteva V, Boudakov I, Bernhard G, Nitsche H (1999) Selective accumulation of heavy metals by three indigenous Bacillus strains, B. cereus, B. megaterium and B. sphaericus, from drain waters of a uranium waste pile in waters of a uranium waste pile. FEMS Microbiol Ecol 29:59–67CrossRefGoogle Scholar
  23. Sorensen MA, Jensen PD, Walton WE, Trumble JT (2006) Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae). Environ Pollut 144(3):759–764. doi: 10.1016/j.envpol.2006.02.025 CrossRefGoogle Scholar
  24. Thanabalu T, Porter AG (1995) Efficient expression of a 100-kilodalton mosquitocidal toxin in protease-deficient recombinant Bacillus sphaericus. Appl Environ Microbiol 61(11):4031–4036Google Scholar
  25. Vaidyanathan R, Scott TW (2007) Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7(2):193–198. doi: 10.1089/vbz.2006.0589 CrossRefGoogle Scholar
  26. Velasquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1–3):713–716. doi: 10.1016/j.jhazmat.2009.01.044 CrossRefGoogle Scholar
  27. Villegas-Torres MF, Bedoya-Reina OC, Salazar C, Vives-Florez MJ, Dussan J (2011) Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil. Int Biodeterior Biodegradation 65:147–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centro de Investigaciones Microbiológicas-CIMICUniversidad de los AndesBogotáColombia

Personalised recommendations