Skip to main content

Advertisement

Log in

Identification and characterization of a novel marine Bacillus cereus VCRC-B540 for mosquito control

  • Published:
BioControl Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A marine bacterium with mosquitocidal effect was isolated from the gut region of the marine red snapper fish (Lutjanus sanguineous). The 16S rRNA gene sequence alignment showed that this isolate belonged to the strain Bacillus cereus VCRC-B540 (NCBI: JN377787). Biochemical studies showed that the strain could be useful in mosquito control. It showed an increasing pattern of toxicity for Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti, without negative effects for the non-targeted organisms Chironomus riparius, Daphnia cephalata and Notonecta glauca. A qualitative analysis of B. cereus showed that a polypeptide (M.wt: 90 kDa) was associated with the toxicity observed. Consequently, the peptide sequence is identified to be a surface layer protein. A phylogenetic analysis of 16S rDNA gene sequence of B. cereus revealed shared homology with the Bacillus species. Hence, it is concluded that the marine bacterium (B. cereus) can be useful in the biological control of mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entom 18:256–267

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Subhra Ghosh T, Das S (2010) Virulance of Bacillus cereus as natural facultative pathogen of Anopheles subpictus Grassi (Diptera: Culicidae) larvae in sub-merged rice fields and shallow ponds. African J Biotech 9:6983–6987

  • Chen ML, Tsen HY (2002) Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. J App Microbiol 92:912–919

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thurigiensis. In: Shively JM (ed) Inclusions in prokaryotes. Springer Berlin, Heidelberg, Germany, pp 195–236

    Chapter  Google Scholar 

  • Freitas DB, Reis MP, Bittencourt CIL, Costa PS, Assis PS, Chartone-souza E, Nascimento AMA (2008) Genotypic and phenotypic diversity of Bacillus species isolated from steel plant waste. BMC Res Notes 1:92–103

    Article  PubMed Central  PubMed  Google Scholar 

  • Haynes SR, Hudson M, Park HW (2011) Isolation of novel Bacillus species showing high mosquitocidal activity against several mosquito species. J Invert Pathol 107:79–81

    Article  Google Scholar 

  • Henriques AO, Moran CP (2007) Structure, assembly, and function of the spore surface layers. Ann Rev Microbiol 61:555–588

    Article  CAS  Google Scholar 

  • Jalalpour SH (2011) Frequency of beta lactamase enzyme in isolated pathogen bacteria from hospital in-vivo and in-vitro condition. J Isf Med Sch 29:1–9

    Google Scholar 

  • Johnson DA, Aulicino PL, Newby JG (1984) Bacillus cereus-induced myonecrosis. J Trauma 24:267–270

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Sujatha S, Anusha JR (2011) Bioactivity of Hemidesmus indicus on human pathogenic bacteria and Culex quinquifaciatus (Diptera: Culicidae). Res J Med Plant 5:613–620

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Mulla MS, Federici BA, Darwazeh HA (1982) Larvicidal efficacy of Bt serotype H-14 against stagnant water mosquitoes and its effects on non-target organisms. Environ Entomol 11:788–795

    Article  Google Scholar 

  • Nadarajah VD, Ting D, Chan KK, Mohamed SM, Kankeswary K, Lee HL (2008) Selective cytotoxic activity against Leukemic cell lines from mosquitocidal Bacillus thuringiensis parasporal inclusions. South Asia J Tro Med Pub Health 39:235–245

    CAS  Google Scholar 

  • Nielsen-LeRoux C, Pasquier F, Charles JF, Sinegre G, Gaven B, Pasteur N (1997) Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera: Culicidae) larvae. J Med Entom 34:321–327

    Article  CAS  Google Scholar 

  • Orlova MV, Smirnova TA, Ganushkina LA, Yacubovich VY, Arizbekyan RR (1998) Insecticidal activity of Bacillus laterosporus. App Environ Microbiol 64:2723–2725

    CAS  Google Scholar 

  • Ouled-Haddar H, Zaghloul TI, Saeed HM (2010) Expression of alkaline proteinase gene in two recombinant Bacillus cereus feather-degrading strains. Folia Microbiol 55:23–27

    Article  CAS  Google Scholar 

  • Park HW, Federici BA (2009) Genetic engineering of bacteria to improve efficacy using the insecticidal proteins of Bacillus species. In: Stock SP (ed) Insect pathogens molecular approaches and techniques. CABI International, Oxfordshire, UK, pp 275–305

    Chapter  Google Scholar 

  • Park HW, Federici BA, Sakano Y (2006) Inclusion proteins from other insecticidal bacteria. In: Shively JM (ed) Inclusions in prokaryotes. Springer Berlin, Heidelberg, Germany, pp 321–330

    Chapter  Google Scholar 

  • Park HW, Mangum CM, Zhong H, Sabrina SR (2007) Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. J Amer Mosq Cont Assoc 23:478–480

    Article  CAS  Google Scholar 

  • Perchat S, Buisson C, Chaufaux J, Sanchis V, lereclus D, Gohar M (2005) Bacillus cereus produces several nonproteinaceous insecticidal exotoxins. J Invert Pathol 90:131–133

    Article  CAS  Google Scholar 

  • Poopathi S, Nielsen-LeRoux C, Charles JF (2002) Alternative methods for preservation of mosquito larvae to study binding mechanism of Bacillus sphaericus toxin. J Inver Path 79:132–134

    Article  CAS  Google Scholar 

  • Poopathi S, Mani C, Vignesh V, Lakshmi Praba V, Thirugnanasambantham K (2013) Genotypic diversity of mosquitocidal bacteria (Bacillus sphaericus, B. thuringiensis, and B. cereus) newly isolated from natural sources. Appl Biochem Biotechnol 171:2233–2246

    Article  CAS  PubMed  Google Scholar 

  • Poopathi S, Mani C, Thirugnanasambantham K, Lakshmi Praba V, Ahangar Niyaz Ahmad, Balagangadharan K (2014) Identification and characterization of a novel marine Bacillus cereus for mosquito control. Parasit Res 113:323–332

    Article  Google Scholar 

  • Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Priest FG (1993) Systematic and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. Amer Soci Micro Press, Washington DC, UK, pp 369–373

    Google Scholar 

  • Radhika D, Ramathilaga A, Sathesh Prabu C, Murugesan AG (2011) Evaluation of larvicidal activity of soil microbial isolates (Bacillus and Acinetobactor Sp) agaist Aedes aegypti (Diptera: Culicidae)-the vector of Chikungunya and Dengue. Proc Internat Aca Ecol Environ Sci 1:169–178

  • Rao DR, Mani TR, Rajendran R, Joseph ASJ, Gajanana A, Reuben R (1995) Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Amer Mosq Cont Assoc 11:1–5

    CAS  Google Scholar 

  • Rusul G, Yaacob NH (1995) Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA. In J Food Micro 25:131–139

    Article  CAS  Google Scholar 

  • Saleem M, Rehman A, Yasmin R, Munir B (2012) Biochemical analysis and investigation on the prospective applications of alkaline protease from a Bacillus cereus strain. Mol Biol Rep 39:6399–6408

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Arias S, Chaignepain S, Denayrolles M, Schmitter JM, Bressollier P, Urdaci MC (2009) Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology 155:1708–1716

    Article  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

  • Silva-Filha MH, Regis L, Nielsen-LeRoux C, Charles JF (1995) Low-level resistance to Bacillus sphaericus in a field-treated population of Culex quiquefasciatus (Diptera: Culicidae). J Econo Entomol 88:525–530

    Article  Google Scholar 

  • Simonsen PE, Mwakitalu ME (2013) Urban lymphatic filariasis. Parasit Res 112:35–44

    Article  Google Scholar 

  • Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematic: the view of numerical taxonomist. Syst Appl Microbiol 12:15–31

    Article  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Nati Acad Sci USA 101:11030–11035

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thiery I, Hamon S, Gaven B, de Barjac H (1992) Host range of Clostridium bifermentans serovar Malaysia, a mosquitocidal anaerobic bacterium. J Amer Mosq Cont Assoc 8:272–277

    CAS  Google Scholar 

  • Vilas-Boas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canad J Microbiol 53:673–687

    Article  CAS  Google Scholar 

  • WHO (1985) Informal consultation on the development of Bacillus sphaericus as a microbial larvicide, TDR/BVC/sphaericus/853/WHO/VBC 1–24

  • Wipfli MS, Merritt RW (1994) Effect of Bacillus thuringiensis var israelensis on non-target benthic insects through direct and indirect exposure. J North Amer Benthol Soc 13:190–205

    Article  Google Scholar 

  • Wirth MS, Walton WE, Federici BA (2010) Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Environ Microbiol 12:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • Zahner V, Rabinovitch L, Suffys P, Momen H (1999) Genotypic diversity among Brevibacillus laterosporus strains. Appl Environ Microbiol 65:5182–5185

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Pondicherry Central University for providing the student fellowship for registering his PhD program. The authors acknowledge Dr. P. Jambulingam, The Director of VCRC, Pondicherry-605006, for permission. They also acknowledge Smt. R. Sundarammal, Sr. Library Information Officer, VCRC, Pondicherry for facilitating library resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbiah Poopathi.

Additional information

Handling Editor: Helen Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, C., Thirugnanasambantham, K., Sundarapandian, S. et al. Identification and characterization of a novel marine Bacillus cereus VCRC-B540 for mosquito control. BioControl 60, 71–79 (2015). https://doi.org/10.1007/s10526-014-9605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9605-8

Keywords

Navigation