Skip to main content
Log in

Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A systematic study of the effects of hydrophilic ionic liquids concentration and nature (alkyl chain length and type of anion) on the activity of Candida antarctica lipase B is here reported. The increase in the concentration of the studied ionic liquids is shown to cause a decrease of the enzyme activity, but the effect is dependent on the ionic liquid used. This behavior is partially due to the ionic liquid impact on the thermodynamic water activity, but direct interactions between the hydrophilic ionic liquid and the enzyme are also disclosed. Cations with longer alkyl chains decrease the enzyme activity by obstruction of its non-polar active site, while direct interactions established between the enzyme and the anions, dominated by dispersion forces and hydrogen-bonding, contribute also for the loss of activity observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson EM, Karin M et al (1998) One biocatalyst many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransform 16:181–204

    Article  CAS  Google Scholar 

  • Attri P, Venkatesu P et al (2011) Activity and stability of [small alpha]-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys Chem Chem Phys 13:2788–2796

    Article  CAS  Google Scholar 

  • Barahona D, Pfromm PH et al (2006) Effect of water activity on the lipase catalyzed esterification of geraniol in ionic liquid [bmim]PF6. Biotechnol Bioeng 93:318–324

    Article  CAS  Google Scholar 

  • Basso A, Cantone S et al (2005) Stability and activity of immobilised penicillin G amidase in ionic liquids at controlled aw. Green Chem 7:671–676

    Article  CAS  Google Scholar 

  • Baumann MD, Daugulis AJ et al (2005) Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol 67:131–137

    Article  CAS  Google Scholar 

  • Berberich JA, Kaar JL et al (2003) Use of salt hydrate pairs to control water activity for enzyme catalysis in ionic liquids. Biotechnol Prog 19:1029–1032

    Article  CAS  Google Scholar 

  • Chiappe C, Leandri E et al (2007) Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols. Green Chem 9:162–168

    Article  CAS  Google Scholar 

  • Cláudio AF, Freire MMG et al. (2011). Personal communication

  • Dang DT, Ha SH et al (2007) Enhanced activity and stability of ionic liquid-pretreated lipase. J Mol Cat B Enzym 45:118–121

    Article  CAS  Google Scholar 

  • De Diego T, Lozano P et al (2004) Fluorescence and CD spectroscopic analysis of the alpha-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Bioeng 88:916–924

    Article  Google Scholar 

  • De Diego T, Lozano P et al (2005) Understanding structure-stability relationships of Candida antarctica lipase B in ionic liquids. Biomacromolecules 6:1457–1464

    Article  Google Scholar 

  • De Diego T, Lozano P et al (2009) On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. J Biotechnol 140:234–241

    Article  Google Scholar 

  • de los Rios AP, Hernandez-Fernandez FJ et al (2007a) Enhancement of activity and selectivity in lipasecatalyzed transesterification in ionic liquids by the use of additives. J Chem Technol Biotechnol 82:882–887

    Article  Google Scholar 

  • de los Rios AP, Hernandez-Fernandez FJ et al (2007b) The effect of ionic liquid media on activity, selectivity and stability of Candida antarctica Lipase B in transesterification reactions. Biocatal Biotransform 25:151–156

    Article  Google Scholar 

  • de Maria PD, Sanchez-Montero JM et al (2006) Understanding Candida rugosa lipases: An overview. Biotechnol Adv 24:180–196

    Article  Google Scholar 

  • Dhake KP, Qureshi ZS et al (2009) Candida antarctica lipase B-catalyzed synthesis of acetamides using [BMIm(PF6)] as a reaction medium. Tetrahedron Lett 50:2811–2814

    Article  CAS  Google Scholar 

  • Dolman M, Halling PJ et al (1996) Biopolymers 41:313–321

    Article  Google Scholar 

  • Eckstein M, Sesing M et al (2002) At low water activity α-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol Lett 24:867–872

    Article  CAS  Google Scholar 

  • Freire MG, Ventura SPM et al (2008) Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilib 268:74–84

    Article  CAS  Google Scholar 

  • Hernandez-Fernandez FJ, de los Rios AP et al (2009) Stability of hydrolase enzymes in ionic liquids. Can J Chem Eng 87:910–914

    Article  CAS  Google Scholar 

  • Hernandez-Fernandez FJ, Rios A et al (2010) Biocatalytic ester synthesis in ionic liquid media. J Chem Technol Biotechnol 85:1423–1435

    CAS  Google Scholar 

  • Houde A, Kademi A et al (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  CAS  Google Scholar 

  • Irimescu R, Kato K (2004) Lipase-catalyzed enantioselective reaction of amines with carboxylic acids under reduced pressure in nonsolvent system and in ionic liquids. Tetrahedron Lett 45:523–525

    Article  CAS  Google Scholar 

  • Kaar JL, Jesionowski AM et al (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125:4125–4131

    Article  CAS  Google Scholar 

  • Kamal A, Chouhan G (2004) Chemoenzymatic synthesis of enantiomerically pure 1,2-diols employing immobilized lipase in the ionic liquid [bmim][PF6]. Tetrahedron Lett 45:8801–8805

    Article  CAS  Google Scholar 

  • Klähn M, Lim GS et al (2011) On the different roles of anions and cations in the solvation of enzymes in ionic liquids. Phys Chem Chem Phys 13:1649–1662

    Article  Google Scholar 

  • Kragl U, Eckstein M et al (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571

    Article  CAS  Google Scholar 

  • Lau RM, Sorgedrager MJ et al (2004) Dissolution of candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487

    Article  Google Scholar 

  • Lungwitz R, Spange S (2008) A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J Chem 32:392–394

    Article  CAS  Google Scholar 

  • Lungwitz R, Strehmel V et al (2010) The dipolarity/polarisability of 1-alkyl-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length. New J Chem 34:1135–1140

    Article  CAS  Google Scholar 

  • Lutz-Wahl S, Trost EM et al (2006) Performance of d-amino acid oxidase in presence of ionic liquids. J Biotechnol 124:163–171

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Kamiya N et al (2010) Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 8:2887–2899

    Article  CAS  Google Scholar 

  • Nandini KE, Rastogi NK (2011) Liquid–liquid extraction of lipase using aqueous two-phase system. Food Bioprocess Technol 4:295–303

    Article  CAS  Google Scholar 

  • Salvador ÂC, Santos MC et al (2010) Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase. Green Chem 12:632–635

    Article  CAS  Google Scholar 

  • Schmidt A, Dordick JS et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  Google Scholar 

  • Sgalla S, Fabrizi G et al (2007) Horseradish peroxidase in ionic liquids. Reactions with water insoluble phenolic substrates. J Mol Catal B Enzym 44:144–148

    Article  CAS  Google Scholar 

  • Soares CMF, Castro HF et al (1999) Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol 77–79:745–758

    Article  Google Scholar 

  • Triolo A, Russina O et al (2007) Nanoscale segregation in room temperature ionic liquids†. J Phys Chem B 111:4641–4644

    Article  CAS  Google Scholar 

  • Triolo A, Russina O et al (2009) Nanoscale organization in piperidinium-based room temperature ionic liquids. J Chem Phys 130:164521–164526

    Article  Google Scholar 

  • van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  Google Scholar 

  • van Rantwijk F, Secundo F et al (2006) Structure and activity of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 8:282–286

    Article  Google Scholar 

  • Ventura SPM, Sousa SG et al (2011) Design of ionic liquids for lipase purification. J Chromatogr B 879:2679–2687

    Article  CAS  Google Scholar 

  • Ventura SPM, de Barros RLF et al (2012) Production and purification of an extracellular lipolytic enzyme using ionic liquid-based aqueous two-phase systems. Green Chem 14:734–740

    Google Scholar 

  • Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    Article  CAS  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22

    Article  CAS  Google Scholar 

  • Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzym Microb Technol 37:19–28

    Article  CAS  Google Scholar 

  • Yang Z, Russell AJ (1996) Fundamentals of non-aqueous enzymology. In: Koskinen AMP, Klibanov AM (eds) Enzymatic reactions in organic media. Blackie Academic and Professional, New York, pp 43–69

    Chapter  Google Scholar 

  • Yang Z, Yue Y-J et al (2008) Tyrosinase activity in ionic liquids. Biotechnol Lett 30:153–158

    Article  CAS  Google Scholar 

  • Yang Z, Yue Y-H et al (2009) Importance of the ionic nature of ionic liquids in affecting enzyme performance. J Biochem 145:355–364

    Article  CAS  Google Scholar 

  • Yuan Y, Bai S et al (2006) Comparison of lipase-catalysed enantioselective esterification of (9)-menthol in ionic liquids and organic solvents. Food Chem 97:324–330

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1983) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA 82:3196–3392

    Google Scholar 

  • Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B Enzym 37:16–25

    Article  CAS  Google Scholar 

  • Zhao H, Campbell SM et al (2006a) Hofmeister series of ionic liquids: kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester. Tetrahedron Asymmetry 17:377–383

    Article  CAS  Google Scholar 

  • Zhao H, Jackson L et al (2006b) Using ionic liquid [EMIM][CH3COO] as an enzyme-’friendly’ co-solvent for resolution of amino acids. Tetrahedron Asymmetry 17:2491–2498

    Article  CAS  Google Scholar 

  • Zhao H, Baker GA et al (2009) Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J Mol Catal B Enzym 57:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Fundação para a Ciência e a Tecnologia for the Post-Doctoral grant SFRH/BPD/37830/2007 of S. P. M. Ventura. The authors also thank the support from Novozymes company for the supply of the enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia P. M. Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, S.P.M., Santos, L.D.F., Saraiva, J.A. et al. Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B. World J Microbiol Biotechnol 28, 2303–2310 (2012). https://doi.org/10.1007/s11274-012-1037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1037-y

Keywords

Navigation