Skip to main content
Log in

Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The active site of Candida rugosa lipase (CRL) is mainly hydrophilic on its external face and hydrophobic on the internal side, and calix[n]arene-based surfactants form complexes with protein residues or with strong hydrogen bonds to open up the lid. Therefore, the activity of lipase persists for a long time. In this work, a series of cyclic and acyclic anionic surfactants (sodium dodecyl sulfate (SDS), p-sulfonatocalix[4]arene, and p-sulfonatocalix[8]arene) and zwitterionic surfactants (l-proline and l-proline derivative of calix[4]arene) were used to examine the relationship between the surfactants’ molecular structures and their effects on the hydrolytic activity of CRL. We explored the effects of different surfactant concentrations, ring effects, and mixing times on CRL activity and several kinetic parameters. The results demonstrated that cyclic compounds were more effective than linear structures for increasing CRL activity and the highest enzyme activity was obtained by the addition of the calix[4]-l-proline derivative. This zwitterionic compound (calix[4]-l-proline derivative) maintains the active center of enzyme and conformation by enabling electrostatic interactions and hydrogen bonding with both the acidic and basic amino acid groups in the structure of the enzyme. The results indicated that, compared with the other surfactants, activating CRL with calix[4]-l-proline resulted in hyperactivation at all concentrations (a relative increase of 230%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed 42:3336–3337

    CAS  Google Scholar 

  2. Dhake KP, Tambade PJ, Qureshi ZS, Singhal RS, Bhanage BM (2011) Hpmc-Pva film immobilized rhizopus oryzae lipase as a biocatalyst for transesterification reaction. ACS Catal 1:316–322

    CAS  Google Scholar 

  3. Yildiz H, Ozyilmaz E, Bhatti AA, Yilmaz M (2017) Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe3O4 nanoparticles. Bioprocess Biosyst Eng 40:1189–1196

    PubMed  CAS  Google Scholar 

  4. Zhang DH, Zhang YF, Zhi GY, Xie YL (2011) Effect of hydrophobic/hydrophilic characteristics of magnetic microspheres on the immobilization of BSA. Colloids Surf B Biointerfaces 82:302–306

    PubMed  CAS  Google Scholar 

  5. Zhang W, Tang Y, Liu J, Jiang L, Huang W, Huo FW, Tian D (2015) Colorimetric assay for heterogeneous-catalyzed lipase activity: enzyme-regulated gold nanoparticle aggregation. J Agric Food Chem 63:39–42

    PubMed  CAS  Google Scholar 

  6. Mosmuller EWJ, Franssen MCR, Engbersen JFJ (1993) Lipase activity in vesicular systems: characterization of Candida cylindracea lipase and its activity in polymerizable diaikylammonium surfactant vesicles. Biotechnol Bioeng 42:196–204

    PubMed  CAS  Google Scholar 

  7. Rubingh DN (1996) The influence of surfactants on enzyme activity. Curr Opin Colloid Interface Sci 1:598–603

    CAS  Google Scholar 

  8. Gabriele F, Spreti N, Del Giacco T, Germani R, Tiecco M (2018) Effect of surfactant structure on the superactivity of Candida rugosa lipase. Langmuir 34:11510–11517

    PubMed  CAS  Google Scholar 

  9. Lotti M, Tramontano A, Longhi S, Fusetti F, Brocca S, Pizzi E, Alberghina L (1994) Variability within the Candida rugosa lipase family. Protein Eng 7:531–535

    PubMed  CAS  Google Scholar 

  10. Hernández JH, del Pozo JT, Canelo PM, Puebla AR, Tejo SP, Marcos JS (2004) Lung cancer incidence in the Province of Avila, Spain in 2002 and decade-long trends. Arch Bronconeumol 40:304–310

    Google Scholar 

  11. Mathesh M, Luan B, Akanbi TO, Weber JK, Liu J, Barrow CJ, Zhou R, Yang W (2016) Opening lids: modulation of lipase immobilization by graphene oxides. ACS Catal 6:4760–4768

    CAS  Google Scholar 

  12. Yilmaz M, Sayin S (2016) Calixarenes in organo and biomimetic catalysis. In: Neri P, Sessler J, Wang MX (eds) Calixarenes and beyond. Springer, Cham

    Google Scholar 

  13. Shinkai S, Mori S, Tsubaki T, Sone T, Mababe O (1984) New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett 25:5315–5318

    CAS  Google Scholar 

  14. Khokhar TS, Memon S, Memon AA, Bhatti AA, Bhatti AA (2020) Improved solubility of morin using p-sulphonatocalix[4]arene as encapsulating agent: hplc analysis and their molecular modelling. Polycy Arom Comp (in press)

  15. Shinkai S, Araki K, Tsubaki T, Arimura R, Manabe O (1987) New syntheses of calixarene-p-sulfonates and p-nitrocalixarenes. J Chem Soc Perkin Trans 1:2297–2299

    Google Scholar 

  16. Arduini A, Pochini A, Reverberi S, Ungaro R (1984) p-t-Butyl-calix[4]arene tetracarboxylic acid. a water soluble calixarene in a cone structure. J Chem Soc Chem Commun 981–982

  17. Nagasaki T, Sisido K, Arimura T, Shinkai S (1992) Novel conformational isomerism of water-soluble calix[4]arenes. Tetrahedron 48:797–804

    CAS  Google Scholar 

  18. Shimizu S, Kito K, Sasaki Y, Hirai C (1997) Water-soluble calixarenes as new inverse phase-transfer catalysts. Nucleophilic substitution of alkyl and arylalkyl halides in aqueous media. Chem Commun 1629–1630

  19. Almi A, Arduini A, Casnati A, Pochini A, Ungaro R (1989) Chloromethylation of calixarenes and synthesis of new water-soluble macrocyclic hosts. Tetrahedron 45:2177–2182

    CAS  Google Scholar 

  20. Arimura T, Nagasaki T, Shinkai S, Matsuda T (1989) Host-guest properties of new water-soluble calixarenes derived from p-(chloromethyl) calixarenes. J Org Chem 54:3766–3768

    CAS  Google Scholar 

  21. Marra A, Scherrmann MC, Dondoni A, Casnati A, Minari P, Ungaro R (1995) Sugar calixarenes: preparation of calix[4]arenes substituted at the lower and upper rims with o-glycosyl groups. Angew Chem Int Ed Eng 33:2479–2481

    Google Scholar 

  22. Dondoni A, Marra A, Scherrmann MC, Casnati F, Sansone F, Ungaro R (1997) Synthesis and properties of o-glycosyl calix[4]arenes (calixsugars). Chem Eur J 3:1774–1782

    CAS  Google Scholar 

  23. Roy R, Kim JM (1999) Amphiphilic p-tert-butylcalix[4]arene scaffolds containing exposed carbohydrate dendrons. Angew Chem Int Ed 38:369–372

    CAS  Google Scholar 

  24. Pérez-Balderas F, Ortega-Muñoz M, Morales-Sanfrutos J, Hernández-Mateo F, Calvo-Flores FG, Calvo-Asín JA, Isac-García J, Santoyo-González F (2003) Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org Lett 5:1951–1954

    PubMed  Google Scholar 

  25. Consoli GML, Cunsolo F, Geraci C, Sgarlata V (2004) Synthesis and lectin binding ability of glycosamino acid−calixarenes exposing glcnac clusters. Org Lett 6:4163–4166

    PubMed  CAS  Google Scholar 

  26. Hamuro Y, Calama MC, Park HS, Hamilton ADA (1997) Calixarene with four peptide loops: an antibody mimic for recognition of protein surfaces. Angew Chem Int Ed Engl 36:2680–2683

    CAS  Google Scholar 

  27. Park HS, Lin Q, Hamilton AD (1999) Protein surface recognition by synthetic receptors: a route to novel submicromolar inhibitors for α-chymotrypsin. J Am Chem Soc 121:8–13

    CAS  Google Scholar 

  28. Kellermann M, Bauer W, Hirsch A, Schade B, Ludwig K, Bottcher C (2004) The first account of a structurally persistent micelle. Angew Chem Int Ed 43:2959–2962

    CAS  Google Scholar 

  29. Lee M, Lee SJ, Jiang LH (2004) Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly. J Am Chem Soc 126:12724–12725

    PubMed  CAS  Google Scholar 

  30. Ryu EH, Zhao Y (2004) Environmentally responsive molecular baskets: unimolecular mimics of both micelles and reversed micelles. Org Lett 6:3187–3189

    PubMed  CAS  Google Scholar 

  31. Sayin S, Yilmaz M (2016) Synthesis and investigation of catalytic affinities of water-soluble amphiphilic calix[n]arene surfactants in the coupling reaction of some heteroaromatic compounds. Tetrahedron 72:6528–6535

    CAS  Google Scholar 

  32. Savelli G, Spreti N, Di Profio P (2000) Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Curr Opin Colloid Interface Sci 5:111–117

    CAS  Google Scholar 

  33. Biasutti MA, Abuin EB, Silber JJ, Correa NM, Lissi EA (2008) Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv Colloid Interface Sci 136:1–24

    PubMed  CAS  Google Scholar 

  34. Otzen D (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591

    PubMed  CAS  Google Scholar 

  35. Sintra TE, Ventura SPM, Coutinho JAP (2014) Superactivity induced by micellar systems as the key for boosting the yield of enzymatic reactions. J Mol Catal B Enzym 107:140–151

    CAS  Google Scholar 

  36. Holmberg K (2018) Interactions between surfactants and hydrolytic enzymes. Colloids Surf B Biointerfaces 168:169–177

    PubMed  CAS  Google Scholar 

  37. Mitra RN, Dasgupta A, Das D, Roy S, Debnath S, Das PK (2005) Geometric constraints at the surfactant headgroup: effect on lipase activity in cationic reverse micelles. Langmuir 21:12115–12123

    PubMed  CAS  Google Scholar 

  38. Prazeres JN, Cruz JAB, Pastore GM (2006) Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37:505–509

    Google Scholar 

  39. Becker T, Goh CY, Jones F, McIldowie MJ, Mocerino M, Ogden MI (2008) Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. Chem Commun 33:3900–3902

    Google Scholar 

  40. Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    PubMed  CAS  Google Scholar 

  41. Sayin M, Akoz E, Yilmaz M (2014) Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Org Biomol Chem 12:6634–6642

    PubMed  CAS  Google Scholar 

  42. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364

    CAS  Google Scholar 

  43. Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M (2008) Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem 32:780–782

    CAS  Google Scholar 

  44. Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res 47:1925–1934

    PubMed  CAS  Google Scholar 

  45. Perret F, Coleman AW (2011) Biochemistry of anionic calix[n]arenes. Chem Commun 47:7303–7319

    CAS  Google Scholar 

  46. Oshima T, Sato M, Shikaze Y, Ohto K, Inoue K, Baba Y (2007) Enzymatic polymerization of o-phenylenediamine with cytochrome c activated by a calixarene derivative in organic media. Biochem Eng J 35:66–70

    CAS  Google Scholar 

  47. Akoz E, Akbulut OY, Yilmaz M (2014) Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (r/s)-naproxen methyl ester. Appl Biochem Biotechno 172:509–523

    CAS  Google Scholar 

  48. Perret F, Lazar AN, Coleman AW (2006) Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun 2425–2438

  49. Kang Y, Liu K, Zhang X (2014) Supra-amphiphiles: a new bridge between colloidal science and supramolecular chemistry. Langmuir 30:5989–6001

    PubMed  CAS  Google Scholar 

  50. Ozyilmaz E, Bayrakci M, Yilmaz M (2016) Improvement of catalytic activity of candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorg Chem 65:1–8

    PubMed  CAS  Google Scholar 

  51. Gerola AP, Costa PFA, Quina FH, Fiedler HD, Nome F (2017) Zwitterionic surfactants in ion binding and catalysis. Curr Opin Colloid Interface Sci 32:39–47

    CAS  Google Scholar 

  52. Cui J, Zhao Y, Liu R, Zhong C, Jia S (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep 6:27928

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kartal F (2016) Enhanced esterification activity through interfacial activation and crosslinked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotechnol Progr 32:899–904

    CAS  Google Scholar 

  54. Secundo F, Carrea G, Tarabiono C, Gatti-Lafranconi P, Brocca S, Lotti M, Jaeger KE, Puls M, Eggert T (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B Enzym 39:166–170

    CAS  Google Scholar 

  55. Delorme V, Dhouib R, Canaan S, Fotiadu F, Carriere F, Cavalier JF (2011) Effects of surfactants on lipase structure, activity, and inhibition. Pharm Res 28:1831–1842

    PubMed  CAS  Google Scholar 

  56. Belle V, Fournel A, Woudstra M, Ranaldi S, Prieri F, Thome V, Currault J, Verger R, Guigliarelli B, Carrière F (2007) Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. Biochemistry 46:2205–2214

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Scientific Research Projects Foundation of Selcuk University (SUBAP Grant number 19201030) for financial support of this work produced from a part of F. Eski’s Master's thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Ozyilmaz.

Ethics declarations

Conflict of Interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2020_2397_MOESM1_ESM.docx

Supplementary file1Synthesis and NMR studies of p-sulfonatocalix[4]arene, p-sulfonatocalix[8]arene and calix [4]arene l-proline derivative. Enzyme activity results at different concentrations of non-cyclic anionic SDS, ring-shaped p-sulfonatocalix[4]arene and p-sulfonatocalix[8]arene, zwitterionic l-proline and calix[4]arene l-proline derivative (DOCX 2246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozyilmaz, E., Eski, F. Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Bioprocess Biosyst Eng 43, 2085–2093 (2020). https://doi.org/10.1007/s00449-020-02397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02397-3

Keywords

Navigation