Skip to main content
Log in

D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Based on its ability to produce lactic acid from glucose in mineral salt medium under anaerobic conditions, genetic modifications on Corynebacterium glutamicum Res 167 were carried out with the aim of producing optical pure D-lactic acid, involving the knockout of L-lactate dehydrogenase gene from C. glutamicum and the heterologous expression of D-lactate dehydrogenase gene from Lactobacillus bulgaricus into C. glutamicum. D-lactic acid production of the genetically engineered strain C. glutamicum Res 167Δldh/ldhA was 17.92 g/l (optical purity higher than 99.9%) after 16 h fermentation, which was 32.25% higher than the lactic acid production of the parental strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour Technol 75:119–126

    Article  CAS  Google Scholar 

  • Bethesda Research Laboratories (1986) BRL pUC host: E. coli DH5α competent cells. Focus 8:9

    Google Scholar 

  • Calabia BP, Tokiwa Y (2007) Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332

    Article  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Jakoby M, Ngougto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  • Joshi DS, Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for D-lactic acid production. Biotechnol Lett 32:517–520

    Article  CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies of the amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  • Lu ZD, Lu MB, He F, Yu LJ (2009) An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresour Technol 100:2026–2031

    Article  CAS  Google Scholar 

  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423

    Article  CAS  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  Google Scholar 

  • Portnoy VA, Herrgard MJ, Palsson BO (2008) Fermentation of d-Glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl Environ Microbiol 74:7561–7569

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sawai D, Tamada M, Kanamoto T (2007) Development of oriented morphology and mechanical properties upon drawing of stereo-complex of poly (L-lactic acid) and poly (D-lactic acid) by solid-state coextrusion. Polym J 39:953–960

    Article  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19 selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gene 145:69–73

    Article  Google Scholar 

  • Tashiro Y, Kaneko W, Sun YQ, Shibata K, Inokuma K, Zendo T, Sonomoto K (2010) Continuous D-lactic acid production by a novel thermotolerant Lactobaillus delbrueckii subsp. lactic QU 41. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-3011-7

  • Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H (2009) Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82:883–890

    Article  CAS  Google Scholar 

  • Vallander L, Erikson KE (1985) Enzymic saccharification of pretreated wheat straw. Biotechnol Bioeng 27:650–659

    Article  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  Google Scholar 

  • Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Yáñez R, Moldes AB, Alonso JL, Parajó JC (2003) Production of D(−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164

    Article  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  CAS  Google Scholar 

  • Zhou L, Tian KM, Chen XZ, Zuo ZR, Shi GY, Wang ZX (2010) Advance in the production of optically pure D-lactic acid by microbial fermentation. China Biotechnol 30:114–124

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the generous donation of the strain C. glutamicum Res 167 and plasmids pK18mobsacB and pXMJ19 by Prof. Shuangjiang Liu of the Institute of Microbiology, Chinese Academy of Sciences. This work was financially supported by the National High Technology Research Development Program of China (No. 2006AA020102), the National Natural Science Foundation of China (No. 20906070 and No. 20976124), the Innovation Foundation of Tianjin University, and Program of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Liu, P., Li, S. et al. D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum . World J Microbiol Biotechnol 27, 2117–2124 (2011). https://doi.org/10.1007/s11274-011-0675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0675-9

Keywords

Navigation