Skip to main content
Log in

Detection and biocontrol potential of Verticillium leptobactrum parasitizing Meloidogyne spp.

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahman J, Johansson T, Olsson M, Punt PJ, Van Den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  CAS  Google Scholar 

  • Al-Hanai M, Al-Rabani M, Al-Mawlodi M (2007) Antagonistic microorganisms for the control of nematodes on different crops. Arab Near East Plant Prot Newslett 44:33

    Google Scholar 

  • Arevalo J, Hidalgo-Díaz L, Martins I, Souza JF, Castro JMC, Carneiro RMG, Tigano MS (2009) Cultural and morphological characterization of Pochonia chlamydosporia and Lecanicillium psalliotae isolated from Meloidogyne mayaguensis eggs in Brazil. Trop Pl Pathol 34:158–163

    Google Scholar 

  • Atkins SD, Clark IM, Sosnowska D, Hirsch PR, Kerry BR (2003a) Detection and quantification of Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting. Appl Environ Microbiol 69:4788–4793

    Article  CAS  Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Clark IM, Morton CO, Montes de Oca N, Gray PA, Kerry BR (2003b) Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biological control agent of root-knot nematodes. Mycol Res 107:206–212

    Article  Google Scholar 

  • Atkins SD, Peteira B, Clark IM, Kerry BR, Hirsch PR (2009) Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. Ann Appl Biol 155:143–152

    Article  CAS  Google Scholar 

  • B’Chir MM, Horrigue N, Verlodt H (1983) Mise au point d’une méthode de lutte intégrée, associant un agent biologique et une substance chimique, pour combattre les Meloidogyne sous-abris plastique en Tunisie. Med Fac Landb Rijksuniv Gent 48:421–432

    Google Scholar 

  • Borneman J, Becker OJ (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Ann Rev Phytopathol 45:153–172

    Article  CAS  Google Scholar 

  • Bridge J, Page SLJ (1980) Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop Pest Man 2:296–298

    Article  Google Scholar 

  • Chen F, Chen S (2002) Mycofloras in cysts, females, and eggs of the soybean cyst nematode in Minnesota. Appl Soil Ecol 19:35–50

    Article  Google Scholar 

  • Ciancio A, Leonetti P, Finetti Sialer MM (2000) Detection of nematode antagonistic bacteria by fluorogenic molecular probes. OEPP/EPPO Bull 30:563–569

    Google Scholar 

  • Ciancio A, Loffredo A, Paradies F, Turturo C, Finetti Sialer MM (2005) Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. OEPP/EPPO Bull 35:157–164

    Google Scholar 

  • Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C (2007) SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. J Microbiol Meth 68:60–68

    Article  CAS  Google Scholar 

  • Duponnois R, Thierry M, Bâ A (1997) Effets potentiels de champignons nématophages sahéliens contre Meloidogyne mayaguensis sur tabac (Nicotiana tabacum L. var. Paraguay × Claro). Ann Tabac Sect 2(29):61–80

    Google Scholar 

  • Ebadi M, Fatemy S, Riahi H (2009) Evaluation of Pochonia chlamydosporia var. chlamydosporia as a control agent of Meloidogyne javanica on pistachio. Biocontrol Sci Technol 19:689–700

    Article  Google Scholar 

  • Gams W, Zare R (2001) A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72:329–337

    Google Scholar 

  • Gaspard JT, Mankau R (1987) Density-dependence and host-specificityof the nematode-trapping fungus Monacrosporium ellipsosporum. Rev Nematol 10:241–246

    Google Scholar 

  • Godoy G, Rodriguez-Kabana R, Morgan-Jones G (1982) Parasitism of eggs of Heterodera glycines and Meloidogyne arenaria by fungi isolated from cysts of H. glycines. Nematrop 12:111–119

    Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. A Rev Mycol Progress 7:221–238

    Article  Google Scholar 

  • Hirsch PR, Atkins SD, Mauchline TH, Morton CO, Davies KG, Kerry BR (2001) Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232:21–30

    Article  CAS  Google Scholar 

  • Hussey RS, Janssen GJW (2002) Root-knot nematodes: Meloidogyne species. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CABI, New York, pp 43–70

    Chapter  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Ann Rev Phytopathol 38:423–441

    Article  CAS  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31(4S):587–618

    CAS  Google Scholar 

  • Lopez-Llorca LV, Maciá-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 49–74

    Google Scholar 

  • Macia-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401

    Article  Google Scholar 

  • Meyer SLF, Huette RN, Sayre RM (1990) Isolation of fungi from Heterodera glycines and in vitro bioassays for their antagonism to eggs. J Nematol 22:532–537

    CAS  Google Scholar 

  • Morgan-Jones G, Rodriguez-Kabana R (1981) Fungi associated with cysts of Heterodera glycines in an Albama soil. Nematrop 11:69–74

    Google Scholar 

  • Morton CO, Hirsch PR, Kerry BR (2004) Infection of plant parasitic nematodes by nematophagous fungi: a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 62:161–170

    Article  Google Scholar 

  • Mumford RA, Walsh K, Baker I, Boonhan N (2000) Detection of potato mop top virus and tobacco rattle virus using a multiplex real-time fluorescent reverse transcription polymerase chain reaction assay. Phytopathol 90:448–453

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2000) Nematophagous fungi. In: Encyclopedia of life sciences. Macmillan Publishers, Basingstoke

  • Olivares-Bernabeu CM, López-Llorca LV (2002) Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Rev Iberoam Micol 19:104–110

    Google Scholar 

  • Ornat C, Sorribas FJ (2008) Integrated management of root-knot nematodes in mediterranean horticultural crops. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecth, pp 295–319

    Google Scholar 

  • Persson C, Olsson S, Jansson HB (2000) Growth of Arthrobotrys superba from a birch wood resource base into soil determined by radioactive tracing. FEMS Microbiol Ecol 31:47–51

    Article  CAS  Google Scholar 

  • Regaieg H, Ciancio A, Horrigue Raouani N, Grasso G, Rosso L (2010) Effect of culture filtrates from the nematophagus fungi Verticillium lebtobactrum on viability of root-knot nematode Meloidogyne incognita. World J Microbiol Biotechnol 26:2285–2289

    Article  CAS  Google Scholar 

  • Rosso LC (2009) Cloning, sequence and gene expression of a new MnSOD- encoding gene from Root-Knot nematode Meloidogyne incognita. J Nematol 4:52–59

    Google Scholar 

  • Rosso LC, Ciancio A, Finetti Sialer M (2007) Application of molecular methods for detection of Pochonia chlamydosporia from soil. Nematrop 37:1–8

    Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Pl Pathol 110:893–908

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 103:1275–1282

    Article  Google Scholar 

  • Sorribas FJ, Ornat C, Galeano M, Verdejo-Lucas S (2003) Evaluation of a native and introduced isolate of Pochonia chlamydosporia against Meloidogyne javanica. Biocontrol Sci Technol 13:707–714

    Article  Google Scholar 

  • Stirling GR, Wachtel MF (1985) Root-knot nematode (Meloidogyne hapla) on potato in south-eastern South Australia. Aust J Exp Agric 25:455–457

    Article  CAS  Google Scholar 

  • Sun MH, Gao L, Shi YX, Li BJ, Liu XZ (2006) Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J Invert Pathol 93:22–28

    Article  Google Scholar 

  • Van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43:133–151

    Article  Google Scholar 

  • Verdejo-Lucas S, Ornat C, Sorribas FJ, Stchiegel A (2002) Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almeria and Barcelona, Spain. J Nematol 34:405–408

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc, New York, pp 315–322

    Google Scholar 

  • Whitehead AG (1998) Plant nematode control. CAB International, Wallingford, p 384

    Google Scholar 

  • Zare R, Gams W, Culham A (2000) A revision of Verticillium sect. Prostrata I. Phylogenetic studies using ITS sequences. Nova Hedwigia 71:465–480

    Google Scholar 

  • Zhang L, Liu X, Zhu S, Chen S (2006) Detection of nematophagous fungus Hirsutella rhossiliensis in soil by real-time PCR and parasitism bioassay. Biol Control 36:316–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author gratefully acknowledges funding by the EU Programme ERASMUS MUNDUS Imageen (International Maghreb-Europe Education Network). Second and fourth authors acknowledge partial funding by Regione Puglia (PE_040) and Mipaf, Project “BIOMED”. ELEP (Cornaredo, Milan) is acknowledged for providing isolate CBS 569.92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Regaieg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regaieg, H., Ciancio, A., Raouani, N.H. et al. Detection and biocontrol potential of Verticillium leptobactrum parasitizing Meloidogyne spp.. World J Microbiol Biotechnol 27, 1615–1623 (2011). https://doi.org/10.1007/s11274-010-0615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0615-0

Keywords

Navigation