Skip to main content

Advertisement

Log in

Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The evaluation of enrichments from pristine hydrothermal vents sediments on its capability of reducing trichloroethylene (TCE) under sulfate reducing conditions with lactate and volatile fatty acids (VFAs) as substrates was performed. Effect of the possible TCE biodegradation intermediates cis and trans 1,2 dichloroethenes on sulfate reduction (SR) was also evaluated. The influence of cyanocobalamin (CNB12) and riboflavin (RF) on the SR and biodegradation of TCE was also determined. Sediments from the vents were incubated at 37°C and supplemented with 4 g l−1 SO4 2−, lactate or VFAs and amended in the corresponding treatments with either CNB12 or RF in separated experiments. A percentage of TCE removal of 86 (150 μmol l−1 initial concentration) was attained coupled to 48% sulfate depletion with lactate as substrate. Up to 93% removal of TCE (300 μmol l−1 initial concentration) and 40% of sulfate was reached for VFAs as electron donor. A combination of lactate and CNB12 yielded the best SR. The overall results suggest a syntrophic association in this microbial community in which sulfate reducers, dehalogenating, and probably halorespiring bacteria may be interacting and taking advantage of the fermentation of substrates differently, but without interruption of SR in spite of the fact that TCE was always present. It was also clear that sulfate reduction must be established in the cultures before any degradation can occur. The microbial community present in these hydrothermal vents sediments could be a new source of inoculum for bioreactors designed for dechlorination purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfonso P, Prol-Ledesma RM (2003) Sulfur isotope geochemistry of the submarine hydrothermal coastal vents of Punta Mita, Mexico. J Geochem Explor 78–79:301–304

    Article  Google Scholar 

  • AOAC (2005) Association of official analytical chemists. In: Horwitz W, Latimer G (eds) Official methods of analysis. AOAC International, Arlington, VA, US

  • Aulenta F, Beccari M, Majone M, Petrangeli Papini M, Tandoi V (2008) Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochem 43:161–168

    Article  CAS  Google Scholar 

  • Canet C, Prol-Ledesma RM (2003) Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates? Marine Geol 199:245–261

    Article  CAS  Google Scholar 

  • Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67:29–46

    Article  CAS  Google Scholar 

  • Debruin WP, Kotterman MJJ, Posthumus MA, Schraa G, Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000

    CAS  Google Scholar 

  • Dhillon A, Teske A (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69(5):2765–2772

    Article  CAS  Google Scholar 

  • Drzyzga O, Gottschal JC (2002) Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Appl Environ Microbiol 68(2):642–649

    Article  CAS  Google Scholar 

  • Drzyzga O, Gerritse J, Dijk JA, Elissen H, Gottschal JC (2001) Coexistence of sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ Microbiol 3(2):92–99

    Article  CAS  Google Scholar 

  • Fallick AE et al (2001) Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan, Ireland. Econ Geol 96:885–890

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3(3):185–254

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. In: Rosso JJ (ed) Biomineralization. Mineralogical Society of America Geochemical Society, Washington, DC, pp 95–114

  • Gerritse J, Renard V, Gomes TMP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

    Article  CAS  Google Scholar 

  • Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    CAS  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–185

    Article  CAS  Google Scholar 

  • Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17:337–348

    Article  CAS  Google Scholar 

  • Hassan SM (2000) Reduction of halogenated hydrocarbons in aqueous media: I. Involving of sulfur in iron catalysis. Chemosphere 40:1357–1363

    Article  CAS  Google Scholar 

  • Hiriart M (2005) Impactos ambientales: acuíferos. Instituto Nacional de Ecología, México

    Google Scholar 

  • Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed rectors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289

    Article  CAS  Google Scholar 

  • Kengen SWM, Breidenbach CG (1999) Reductive dechlorination of tetrachloroethene to cis-1, 2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl Environ Microbiol 65:2312–2316

    CAS  Google Scholar 

  • Luijten M, de Weert J, Smidt H, Boschker HTS, de Vos WM (2003) Description of Sulfurospirillum halorespirans sp nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. Nov. Int J Syst Evol Microbiol 53:787–793

    Article  CAS  Google Scholar 

  • Middeldorp PJM, Luijten MLGC, van de Pas BA, van Eekert MHA, Kengen SWM (1999) Anaerobic microbial reductive dehalogenatgion of chlorinated ethenes. Bioremed J 3:151–169

    Article  CAS  Google Scholar 

  • OGWDW (2009) The office of groundwater and drinking water. Technical factsheet on trichloroethylene. Environmental Protection Agency, Washington, DC, US

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, vol 3. Wiley, NY, pp 517–611

    Google Scholar 

  • Pavlostathis SG, Zhuang P (1991) Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface soil. Appl Microbiol Biotechnol 36:416–420

    Article  CAS  Google Scholar 

  • Rasmussen G, Komisar SJ, Ferguson (1999) Transformation of tetrachloroethene to ethene in mixed methanogenic cultures: effect of electron donor, biomass levels, and inhibitors. In: Proceedings of bioremediation of chlorinated and PAH compounds. Battelle Org., Columbus, OH, US, pp 309–313

  • SEMARNAT (2003) Anteproyecto de norma oficial mexicana NOM 014-CNA-2003. Requisitos para la recarga oficial de acuíferos. SEMARNAT, Mexico City, Mexico

  • Slater GF, Sherwood L, Lesage S, Brown S (2003) Carbon isotope fractionation of PCE and TCE during dechlorination by Vitamin B12. Ground Water Monit Remediat 23(4):59–67

    Article  CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. Nov. Appl Environ Microbiol 69:2964–2974

    Article  CAS  Google Scholar 

  • Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp strain Y51 capable of efficient dehalogenation of tetrachlroroethene and polychlroroethenes. Biosci Biotechnol Biochem 65:1474–1481

    Article  CAS  Google Scholar 

  • Teske A, Brinkhoff G, Muyzer GM, Rethmeier M, Jannasch HW (2000) Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66(8):3125–3133

    Article  CAS  Google Scholar 

  • Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68(4):1994–2007

    Article  CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238

    Article  Google Scholar 

  • Wang SM, Tseng SK (2009) Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron. J Biosci Bioeng 107(3):287–292

    Article  CAS  Google Scholar 

  • Widdel F (1998) Microbiology and ecology of sulphate and sulphur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–586

    Google Scholar 

  • Zhao Y, Ren N, Wang A (2008) Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere 72:233–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to MS Elvira Ríos-Leal for her technical assistance (CINVESTAV-Instituto Politécnico Nacional) and to Biol. Sherman Hernández for collecting the sediment samples (Centro Regional Investigación Pesquera, CRIP Puerto Vallarta, Mexico). Thanks also to Mr. Alfán for his assistance in the lab. This research was financially supported by National Council of Science and Technology (CONACyT grant 82627) and Instituto Politécnico Nacional, grant 20080273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guerrero-Barajas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero-Barajas, C., García-Peña, E.I. Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene. World J Microbiol Biotechnol 26, 21–32 (2010). https://doi.org/10.1007/s11274-009-0136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0136-x

Keywords

Navigation