Skip to main content
Log in

Expression in Pichia pastoris X33 of His-tagged lipase from a novel strain of Rhizopus oryzae and its mutant Asn 134 His: purification and characterization

  • Original paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 03 January 2010

Abstract

The sequence corresponding to the mature lipase of Rhizopus oryzae WPG (ROLw) was subcloned in the pPIC9K expression vector, with a strong AOX1 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. The His-tagged lipase was expressed in Pichia Pastoris X33 and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). High level expression of the lipase by Pichia Pastoris X33 cells harbouring the lipase gene containing expression vector was observed upon induction with 2.5 g/l methanol at 28°C; the specific activity of the purified His6-ROLw was 1,500 or 760 U/mg using olive oil emulsion or tributyrin as substrates, respectively. To check the importance of Asn 134 His substitution in the affinity and substrate selectivity of ROLw, the mutant His6-ROLw-N134H was overexpressed in Pichia Pastoris X33 and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged ROLw-N134H was 5,900 and 35 U/mg using olive oil emulsion or tributyrin as substrate. A comparative study of the wild type (His6-ROLw) and the mutant (His6-ROLw-N134H) proteins was carried out. A 3D structure model of ROLw was built using the RNL structure as template. We have concluded that a slight increase in the exposed hydrophilic residues on the surface of ROLw as compared to RNL (ROLwN134H) could be responsible for a higher selectivity of ROlw for long and short chain triacylglycerols at the lipid/water interface and then explaining the importance of Asn 134 for the chain length specificity of ROLw. This property is quite rare among Rhizopus lipases and gives this new lipase great potential for use in the field of biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROLw:

Rhizopus oryzae WPG lipase

RDL:

Rhizopus delemar lipase

RNL:

Rhizopus niveus lipase

ROL29:

Rhizopus oryzae lipase

A:

Amino acids

Asn (N):

Asparagine

His (H):

Histidine

His6 :

6 Histidine

Ser (S):

Serine

D:

Aspartic acid

LB:

Luria-Bertani

GA:

Gum arabic

BSA:

Bovine serum albumin

DTT:

Dithiothreitol

NaDC:

Sodium deoxycholate

PCR:

Polymerase chain reaction

SDS/PAGE:

Sodium dodecyl sulfate/polyacrylamide gel electrophoresis

TC2 :

Triacetin

TC3 :

Tripropionin

TC4 :

Tributyrin

TC8 :

Trioctanoin

TC18 :

Triolein

TAG:

Triacylglycerol

References

  • Beer HD, Wohlfahrt G, Schmid RD, McCarthy JEG (1996) The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J 319:351–359

    CAS  Google Scholar 

  • Beer HD, McCarthy JEG, Bornscheuer UT, Schmid RD (1998) Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochim Biophys Acta 1399:173–180

    CAS  Google Scholar 

  • Ben Salah A, Sayari A, Verger R, Gargouri Y (1994) La lipase de Rhizopus oryzae: production purification et caractéristiques biochimiques. Rev fran corps gras 41:133–137

    CAS  Google Scholar 

  • Ben Salah A, Sayari A, Verger R, Gargouri Y (2001) Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique. Biochimie 83:463–469. doi:10.1016/S0300-9084(01)01283-4

    Article  CAS  Google Scholar 

  • Ben Salah R, Mosbah H, Fendri A, Gargouri A, Gargouri Y, Mejdoub H (2006) Biochemical and molecular characterization of a lipase produced by Rhizopus oryzae. FEMS Microbiol Lett 260:241–248. doi:10.1111/j.1574-6968.2006.00323.x

    Article  CAS  Google Scholar 

  • Ben Salah R, Ghamgui H, Miled N, Mejdoub H, Gargouri Y (2007) Production of butyl acetate ester by lipase from novel strain of Rhizopus oryzae. J Biosci Bioeng 103:368–372. doi:10.1263/jbb.103.368

    Article  CAS  Google Scholar 

  • Chahinian H, Nini L, Boitard E, Dubes JP, Comerau LC, Sarda L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662. doi:10.1007/s11745-002-0946-7

    Article  CAS  Google Scholar 

  • Chiruvolu V, Cregg JM, Meagger MM (1997) Recombinant protein production in an alcohol oxidase defective strain of Pichia pastoris in fed batch fermentation. Enzyme Microb Technol 212:77–283

    Google Scholar 

  • Cos O, Resina D, Ferrer P, Montesinos JL, Valero F (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26:86–94. doi:10.1016/j.bej.2005.04.005

    Article  CAS  Google Scholar 

  • Dannert CS, Rua M, Atomi H, Schmid R (1996) Thermoalkalophilic lipase of bacillus thermocatenulatus; molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta 1301:105–114

    Google Scholar 

  • Derewenda U, Swenson L, Wei Y, Green R, Kobos PM, Joerger R, Haas MJ, Derewenda ZS (1994) Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res 35:524–534

    CAS  Google Scholar 

  • Di Lorenzo M, Hidalgo A, Haas M, Bornsheuer UT (2005) Heterologous production of functional forms of Rhizopus oryzae lipase in Escherichia coli. Appl Environ Microbiol 123:8974–8977. doi:10.1128/AEM.71.12.8974-8977.2005

    Article  CAS  Google Scholar 

  • Ferrato F, Carriere F, Sarda L, Verger R (1997) A critial reevaluation of the phenomenon of interfacial activation. Methods Enzymol 286:327–346. doi:10.1016/S0076-6879(97)86018-1

    Article  CAS  Google Scholar 

  • Gargouri Y, Julien R, Sugihara A, Verger R, Sarda L (1984) Inhibition of pancreatic and microbial lipases by proteins. Biochim Biophys Acta 795:326–331

    CAS  Google Scholar 

  • Gargouri Y, Pieroni G, Riviere C, Sugihara A, Sarda L, Verger R (1985) Inhibition of lipases by proteins. A kinetic study with dicaprin monolayers. J Biol Chem 260:2268–2273

    CAS  Google Scholar 

  • Jaeger K, Reetz M (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403. doi:10.1016/S0167-7799(98)01195-0

    Article  CAS  Google Scholar 

  • Kohno M, Kugimiya W, Hashimoto Y, Morita Y (1994) Purification, characterization of two types of lipase from Rhizopus niveus. Biosci Biotechnol Biochem 58:1007–1012

    Article  CAS  Google Scholar 

  • Kohno M, Funatsu J, Mikami B, Kugimiya W, Matsuo T, Marita Y (1996) The crystal structural of lipase II from Rhizopus niveus at 2.2 Å resolution. J Biochem 120:505–510

    CAS  Google Scholar 

  • Kohno M, Enatsu M, Yoshiizumi M, Kugimiya W (1999) High-level expression of Rhizopus niveus lipase in the yeast Saccharomyces cerevisiae and structural properties of the expressed enzyme. Protein Expr Purif 15:327–335. doi:10.1006/prep.1999.1029

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Laskowski RA, Mac Arthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Minning S, Serrano A, Ferrer P, Sola C, Schmid RD, Valero F (2001) Optimization of the high- level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70. doi:10.1016/S0168-1656(00)00402-8

    Article  CAS  Google Scholar 

  • Nini L, Sarda L, Comerau LC, Boilard E, Dubes JP, Chahinian H (2001) Lipase-catalysed hydrolysis of short-chain substrates in emulsion: a kinetic study. Biochim Biophys Acta 1534:34–44

    CAS  Google Scholar 

  • Rachel D, Milton T, Hearn W (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138. doi:10.1002/jmr.687

    Article  CAS  Google Scholar 

  • Resina D, Serrano A, Valero F, Ferrer P (2004) Expression of Rhizopus oryzae lipase in Pichia pastoris under control of nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol 109:103–113. doi:10.1016/j.jbiotec.2003.10.029

    Article  CAS  Google Scholar 

  • Sayari A, Frikha F, Miled N, Mtibaa H, Ben Ali Y, Verger R, Gargouri Y (2005) N- terminal peptide of Rhizopus oryzae lipase is important for its catalytic properties. FEBS Lett 579:976–982. doi:10.1016/j.febslet.2004.12.068

    Article  CAS  Google Scholar 

  • Schipper MAA (1984) A revision of the genus Rhizopus: the Rhizopus stolonifer-group and Rhizopus oryzae. Stud Mycol 25:1–34

    Google Scholar 

  • Surribas A, Stahn R, Montesinos JL, Enfors SO, Valero F, Jahic M (2007) Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol 130:291–299. doi:10.1016/j.jbiotec.2007.04.009

    Article  CAS  Google Scholar 

  • Tsodicov OV, Record MTJ, Sergeev YV (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23:600–609. doi:10.1002/jcc.10061

    Article  CAS  Google Scholar 

  • Van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Verlag der Fachvereine, Zürich

    Google Scholar 

Download references

Acknowledgments

This work is supported financially by « Ministère de la recherche scientifique-Tunisia » through a grant to « Laboratoire de Biochimie et de Génie Enzymatique des Lipases—ENIS ».

We thank JAOUA Mohamed for sequencing DNA, LADJIMI Moncef, BEZZINE Sofiane, SAYARI Adel and MILED Nabil for the considerable collaboration during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riadh Ben Salah.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11274-009-0279-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Salah, R., Gargouri, A., Verger, R. et al. Expression in Pichia pastoris X33 of His-tagged lipase from a novel strain of Rhizopus oryzae and its mutant Asn 134 His: purification and characterization. World J Microbiol Biotechnol 25, 1375–1384 (2009). https://doi.org/10.1007/s11274-009-0024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0024-4

Keywords

Navigation