Skip to main content
Log in

Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Characterization of the microbial populations formed in gas pipelines is essential to understand the metallic surface-microbe interaction, their role in metal corrosion, and to implement efficient monitoring and control strategies. Microbial community analysis in a corroded gas pipeline in a petroleum-producing facility in the Southeast region in Mexico was performed by traditional cultivation techniques and identification based on 16S rRNA gene sequence. In all samples, thin bacterial biofilms were observed and pitting corrosion was reveled after removing the biofilms. Six pure or mixed cultures of anaerobic bacteria were obtained and their 16S rRNA libraries were constructed, respectively. At least two members of each RFLP profile were sequenced and the phylogenetic affiliations of cloned bacterial 16S rRNA genes indicated that native biofilms were mainly colonized by Desulfovibrio vulgaris and Desulfovibrio desulfuricans, sulfate-reducing bacteria members; Citrobacter freundii, an Enterobacteriaceae member; Clostridium celerecrescens and Clostridium sporogenes, spore-forming anaerobic species and Cetobacterium somerae, a microaerotolerant, non-spore-forming fusobacteria. Some of these species have been observed consistently in other steel pipelines previously, but Cetobacterium members and C. celerecrescens are described for the fist time in this corroded gas pipeline. The potential role of each species in biofilm formation and steel corrosion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan VJM, Macaskie LE, Callow ME (1999) Development of a pH gradient within a biofilm is dependent upon the limiting nutrient. Biotechnol Lett 21:407–413

    CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Angeles-Chavez C, Romero JM, Amaya M, Martinez L, Perez R (2001) New strain of anaerobic bacteria and its association with corrosion pitting of X52 pipeline steel. Br Corros J 36:292–296

    Article  CAS  Google Scholar 

  • API Method RP38 (1965) Biological analysis of subsurface injection waters. American Petroleum Institute, Washington

    Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen and sulfate and hydrogen and thiosulfate as sole energy sources. Arch Microbiol 117:209–214

    Article  CAS  Google Scholar 

  • Basnakova G, Stephens ER, Thaller MC, Rossolini GM, Macaskie LE (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotech 50:266–272

    Article  CAS  Google Scholar 

  • Barett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51:192–205

    Google Scholar 

  • Beech IB, Sunner JA (2007) Sulphate-reducing bacteria and their role in corrosion of ferrous materials. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems, Cambridge University Press, Cambridge, pp 459–483

  • Beech IB, Cheung CWS, Chan CSP, Hill MA, Franco R, Lino AR (1994) Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. Int Biodet Biodeg 34:289–303

    Article  CAS  Google Scholar 

  • Bermont-Bouis D, Janvier M, Grimont PA, Dupont I, Vallaeys T (2007) Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol 102:161–168

    Article  CAS  Google Scholar 

  • Bonthrone KM, Quarmby J, Hewitt CJ, Allan VMJ, Paterson-Beedle M, Kennedy JF, Macaskie LE (2000) The effect of the growth medium on the composition and metal binding behaviour of the extracellular polymeric material of a metal-accumulating Citrobacter sp. Environ Technol 21:123–134

    Article  CAS  Google Scholar 

  • Bryant RD, Jansen W, Boivin J, Laishley EJ, Costerton JW (1991) Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl Environ Microbiol 57:2804–2809

    CAS  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, Vol. 2, Williams and Wilkins, Baltimore, MD, pp 1141–1200

    Google Scholar 

  • Chatelus C, Carrier P, Saignes P, Libert MF, Berlier Y, Lespinat PA, Fauque G, Legall J (1987) Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion. Appl Environ Microbiol 53:1708–1710

    CAS  Google Scholar 

  • Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil to PCR. Soil Biol Biochem 30:983–993

    Article  CAS  Google Scholar 

  • Deshmane V, Lee CM, Sublette KL (1993) Microbial reduction of sulfur dioxide with pretreated sewage sludge and elemental hydrogen as electron donors. Appl Biochem Biotechnol 39–40:739–752

    Google Scholar 

  • Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  Google Scholar 

  • Dzierzewicz Z, Cwalina B, Chodurek E, Wilczok T (1997) The relationship between microbial metabolic activity and biocorrosion of carbon steel. Res Microbiol 148:785–793

    Article  CAS  Google Scholar 

  • Eckford RE, Fedorak PM (2002) Planktonic nitrate reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J Ind Microbiol Biotechnol 29:83–92

    Article  CAS  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60

    Article  CAS  Google Scholar 

  • Farmer JJ, Davis BR, Hickman-Brenner FW, McWhorter A, Huntley-Carter GP, Asbury MA, Riddle C, Wathen-Grady HG, Elias C, Fanning GR (1985) Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21:46–76

    CAS  Google Scholar 

  • Fenchel T (2002) Microbial behavior in a heterogeneous world. Science 296:1068–1071

    Article  CAS  Google Scholar 

  • Ferrari MD, De Mele FL, Videla HA (1995) Manual Práctico de Biocorrosión y Biofouling para la Industria Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Red Temática XVc. BIOCORR, 8 pp

  • Finegold SM, Vaisanen ML, Molitoris DR, Tomzynski TJ, Song Y, Liu C, Collins MD, Lawson PA (2003) Cetobacterium somerae sp. nov. from human feces and emended description of the genus Cetobacterium. Syst Appl Microbiol 26:177–181

    Article  Google Scholar 

  • Galtier N, Gouy, Gautier C (1996) SEA VIEW and PHYLO_WIN, two graphic tools for sequence alignment and molecular phylogeny. Comput Applic Biosci 12:543–548

    CAS  Google Scholar 

  • Geiger SL, Ross TJ, Barton LL (1993) Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microsc Res Techniq 25:429–433

    Article  CAS  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  Google Scholar 

  • Hernández-Eugenio G, Fardeau ML, Cayol JL, Patel BK, Thomas P, Macarie H, Garcia JL, Ollivier B (2002) Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:1461–1468

    Article  Google Scholar 

  • Hernandez M, Marchand EA, Roberts DJ, Peccia J (2002) In-situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. Biodeterior Biodegration 49:274–286

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hollaus F, Sleytr U (1972) On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch Microbiol 86:129–146

    CAS  Google Scholar 

  • Iyer P, Bruns MA, Zhang H, Van Ginkel S, Logan BE (2004) H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66:166–173

    Article  CAS  Google Scholar 

  • Jan-Roblero J, Romero JM, Amaya M, Le Borgne S (2004) Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Appl Microbiol Biotechnol 64:862–867

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Knaebel DB, Crawford RL (1995) Extraction and purification of microbial DNA from petroleum contaminated soils and detection of low number of toluene, octane and pesticide degraders by multiple polymerase chain reaction and Southern analysis. Mol Ecol 4:579–591

    Article  CAS  Google Scholar 

  • Kumar GR, Vatsala TM (1989) Hydrogen production from glucose by Citrobacter freundii. Indian J Exp Biol 27:824–825

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    CAS  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Leu JY, McGovern-Traa CP, Porter AJ, Harris WJ, Hamilton WA. (1998) Identification and phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4:165–174

    Article  CAS  Google Scholar 

  • Little BJ, Ray RI, Pope RK (2000) Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 56:433–443

    CAS  Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408

    CAS  Google Scholar 

  • Lopez MA, Zavala-Diaz de la Serna FJ, Jan-Roblero J, Romero JM, Hernandez-Rodriguez C (2006) Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiol Ecol 58:145–154

    Article  CAS  Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agronomy 54: 175–231

    Article  CAS  Google Scholar 

  • Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BK, Fardeau ML, Thomas P, Crolet JL, Garcia JL (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824

    Article  CAS  Google Scholar 

  • Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez-Rodriguez C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12:122–133

    Article  CAS  Google Scholar 

  • Pound BG (1998) Gap analysis of the Pipeline Research Committee International (PRCI)/Gas Research Institute (GRI) research program on internal corrosion. GRI contract 6008. Topical report SF26363.000/AOTO/1198/BP02, Gas Research Institute, Des Plaines, III, USA

  • Rajasekar A, Babu TG, Pandian ST, Maruthamuthu S, Palaniswamy N, Rajendran A (2007) Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion. J Ind Microbiol Biotechnol 34:589–598

    Article  CAS  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. ASM Press, Washington DC, pp 489–495

  • Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  CAS  Google Scholar 

  • Sambrook J, Rusell DW (2001) Plasmids and their usefulness in molecular cloning. Molecular Cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, pp 1.35–1.37

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • U.S. Federal Highway Administration (FHWA) (2002) Corrosion costs and preventive strategies in the United States, Report FHWA-RD-01–156, National Technical Information Service. 5285 Port Royal Road, Springfield, VA 22161

  • Widdel F (1988) Microbiology and ecology of sulfate and sulfur reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033

    Article  CAS  Google Scholar 

  • Xu DK, McFeters AG, Stewart PS (2000) Biofilm resistance to antimicrobial agent. Microbiology 146:547–549

    CAS  Google Scholar 

  • Zhang T, Fang PH (2001) Phylogenetic diversity of SRB-rich marine biofilm. Appl Microbiol Biotechnol 57:437–440

    Article  CAS  Google Scholar 

  • Zhang T, Fang HHP, Ko BCB (2003) Methanogen population in a marine biofilm corrosive to mild steel. Appl Microbiol Biotechnol 63:101–106

    Article  CAS  Google Scholar 

  • Zhu XY, Lubeck J, Kilbane II JJ (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:5354–5363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SIP20070651 and SIP20070164 Instituto Politécnico Nacional (IPN). C. H. Hernández-Rodríguez and J. Jan-Roblero appreciate the fellowships of Comisión de Operación y Fomento de Actividades Académicas (COFAA) and Estímulo al Desempeño Académico (EDI), IPN, and Sistema Nacional de Investigadores (SNI), CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan-Roblero, J., Posadas, A., Zavala Díaz de la Serna, J. et al. Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico. World J Microbiol Biotechnol 24, 1775–1784 (2008). https://doi.org/10.1007/s11274-008-9674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9674-x

Keywords

Navigation