Skip to main content
Log in

Glutamic acid 219 is critical for the thermostability of a truncated α-amylase from alkaliphilic and thermophilic Bacillus sp. strain TS-23

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The functional and structural significance of glutamic acid 219 of a N- and C-terminally truncated Bacillus sp. strain TS-23 α-amylase (BACΔNC) was explored by the approach of site-directed saturation mutagenesis. The expressed wild-type and mutant enzymes have been purified by nickel-chelate chromatography and their molecular mass was determined to be approximately 54 kDa by SDS/PAGE. Except E219F, E219P, and E219W, all other mutant enzymes exhibited a lower shift in their optimum temperatures with respect to the wild-type enzyme. A decreased thermostability was also found in all of the mutant enzymes when compared with the wild-type form of BACΔNC. Except E219F, E219P, and E219W mutant enzymes, greater than 2-fold decrease in k cat and a similar substrate affinity relative to the wild-type BACΔNC were observed for the rest mutant enzymes. Based on these observations, it is suggested that Glu-219 apparently plays an important role in the thermostability of BACΔNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MW (1993) Enzymes and proteins from organisms that grow near and above 100°C. Annu Rev Microbiol 47:627–658

    CAS  Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplantics α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  CAS  Google Scholar 

  • Anderson DE, Hurley JH, Nicholson H, Baase WA, Matthews BW (1993) Hydrophobic core repacking and aromatic-aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117→Phe. Protein Sci 2:1285–1290

    CAS  Google Scholar 

  • Ben Ali M, Khemakhem B, Robert X, Haser R, Bejar S (2006) Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain. Biochem J 394:51–56

    Article  CAS  Google Scholar 

  • Bhuiya MW, Sakuraba H, Ohshima T, Imagawa T, Katunuma N, Tsuge H (2005) The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. J Mol Biol 345:325–337

    Article  CAS  Google Scholar 

  • Brosnan MP, Kelly CT, Fogarty WM (1992) Investigation of the mechanisms of irreversible thermoinactivation of Bacillus stearothermophilus α-amylase. Eur J Biochem 203:225–231

    Article  CAS  Google Scholar 

  • Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469

    Article  CAS  Google Scholar 

  • Chang CT, Lo HF, Chi MC, Yao CY, Hsu WH, Lin LL (2003) Identification of essential histidine residues in a recombinant α-amylase of thermophilic and alkaliphilic Bacillus sp. strain TS-23. Extremophiles 7:505–509

    Article  CAS  Google Scholar 

  • Cheung YY, Lam SY, Chu WK, Allen MD, Bycroft M, Wong KB (2005) Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii: structural insights into enzymatic catalysis, thermostability, and dimerization. Biochemitry 44:4601–4611

    Article  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2002) Structural determinants of cold adaptation and stability in a psychrophilic α-amylase. Biologia (Bratislava) 57:211–219

    Google Scholar 

  • D’Amico S, Marx JC, Gerdy C, Feller G (2003) Activity stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  CAS  Google Scholar 

  • Daniel RM, Danson MJ (2001) Assaying activity and assessing thermostability of hyperthermophilic enzymes. Methods Enzymol 334:283–393

    Article  CAS  Google Scholar 

  • Declerck N, Machius M, Chambert R, Wiegand G, Huber R, Gaillardin C (1997) Hyperthermostable mutants of Bacillus licheniformis α-amylase: thermodynamic studies and structural interpretation. Protein Eng 10:541–549

    Article  CAS  Google Scholar 

  • Declerck N, Machius M, Weigand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. J Mol Biol 301:1041–1057

    Article  CAS  Google Scholar 

  • Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C (2002) Engineering the thermostability of Bacillus licheniformis α-amylase. Biologia (Bratislava) 57:203–211

    CAS  Google Scholar 

  • Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C (2003) Hyperthermostabilization of Bacillus licheniformis α-amylase and modulation of its stability over a 50°C temperature range. Protein Eng 16:287–293

    Article  CAS  Google Scholar 

  • Feller G, Payan F, Theys F, Qian M, Haser R, Gerday C (1994) Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem 222:441–447

    Article  CAS  Google Scholar 

  • Fitter J (2005) Structural and dynamical features contributing to thermostability in α-amylases. Cell Mol Life Sci 62:1925–1937

    Article  CAS  Google Scholar 

  • Fitter J, Herrmann R, Dencher NA, Blume A, Hauss T (2001) Activity and stability of a thermostable α-amylase compared to its mesophilic homologue: mechanism of thermal adaptation. Biochemistry 40:10723–10731

    Article  CAS  Google Scholar 

  • Hurley JH, Baase WA, Matthews BW (1992) Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol 224:1143–1159

    Article  CAS  Google Scholar 

  • Janeček Š (1993) Does the increased hydrophobicity of the interior and the hydrophilicity of the exterior of an enzyme structure reflect its increased thermostability? Int J Biol Macromol 15:317–318

    Article  Google Scholar 

  • Janeček Š (1997) alpha-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67:67–97

    Article  Google Scholar 

  • Janeček Š, Balaz S (1992) α-Amylases and approaches leading to their enhanced stability. FEBS Lett 304:1–3

    Article  Google Scholar 

  • Janeček Š, Leveque E, Belarbi A, Haye B (1999) Close evolutionary relatedness of α-amylases from Archaea and plants. J Mol Evol 48:421–426

    Article  Google Scholar 

  • Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056

    Article  CAS  Google Scholar 

  • Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends Biochem Sci 26:550–556

    Article  CAS  Google Scholar 

  • Karlstrom M, Stokke R, Steen IH, Birkeland NK, Ladenstein R (2005) Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability. J Mol Biol 345:559–577

    Article  CAS  Google Scholar 

  • Kim YW, Choi JH, Kim JW, Park C, Cha HJ, Oh BH, Moon TW, Park KH (2003) Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol 69:4866–4874

    Article  CAS  Google Scholar 

  • Korolev S, Nayal M, Barnes WM, Di Cera E, Waksman G (1995) Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-Å resolution: structural basis for thermostability. Proc Natl Acad Sci USA 92:9264–9268

    Article  CAS  Google Scholar 

  • Lin LL, Chen PJ, Liu JS, Wang WC, Lo HF (2006) Idetification of glutamate residues important for catalytic activity or thermostability of a truncated Bacillus sp. strain TS-23 α-amylase by site-directed mutagenesis. Protein J 25:232–239

    Article  CAS  Google Scholar 

  • Lin LL, Tasu MR, Chu WS (1997) A gene encoding for an α-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J Appl Microbiol 82:325–334

    Article  CAS  Google Scholar 

  • Lo HF, Chen YH, Hsiao NW, Chen HL, Hu HY, Hsu WH, Lin LL (2005) Stabilization of a truncated Bacillus sp. strain TS-23 α-amylase by replacing histidine 436 with aspartate. World J Microbiol Biotechnol 21:411–416

    Article  CAS  Google Scholar 

  • Lo HF, Lin LL, Chiang WY, Chi MC, Hsu WH, Chang CT (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178:115–123

    Article  CAS  Google Scholar 

  • Lo HF, Lin LL, Li CC, Hsu WH, Chang CT (2001) The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp. TS-23 α-amylase in Escherichia coli. Curr Microbiol 43:170–175

    Article  CAS  Google Scholar 

  • MacGregor EA, Janeček Š, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    CAS  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292

    Article  CAS  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (2003) Kinetic stabilization of Bacillus licheniformis α-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 264:18933–18938

    Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem (Tokyo) 95:697–702

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miyazono K, Sawano Y, Tanokura M (2005) Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Proteins 61:196–205

    Article  CAS  Google Scholar 

  • Morand P, Biellmann JF (1991) Modification of α-amylase from Bacillus licheniformis by the polyaldehyde derived from β-cyclodextrin and α-amylase thermostability. FEBS Lett 289:148–150

    Article  CAS  Google Scholar 

  • Nielsen JE, Borchert TV (2000) Protein engineering of bacterial α-amylases. Biochim Biophys Acta 1543:253–274

    CAS  Google Scholar 

  • Russell RJ, Hough DW, Danson MJ, Taylor GL (1994) The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2:1157–1167

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springer Harbor Laboratory, Cold Spring Harbor, New York, USA

    Google Scholar 

  • Schumann J, Bohm G, Schumacher G, Rudolph R, Jaenicke R (1993) Stabilization of creatinase from Pseudomonas putida by random mutagenesis. Protein Sci 10:1612–1620

    Article  Google Scholar 

  • Spassov VZ, Karshikoff A, Ladenstein R (1995) The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci 4:1516–1527

    CAS  Google Scholar 

  • Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  CAS  Google Scholar 

  • Suvd D, Fujimoto Z, Takase K, Matsummra M, Mizuno H (2001) Crystal structure of Bacillus stearothermophilus α-amylase: possible factors determining the thermostability. J Biochem (Tokyo) 129:461–468

    CAS  Google Scholar 

  • Suzuki Y, Ito N, Yuuki T, Yamagata H, Udaka S (1989) Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J Biol Chem 264:18933–18938

    CAS  Google Scholar 

  • Synowiecki J, Grzybowska B, Zdziebio A (2006) Sources, properties and suitability of new thermostable enzymes in food processing. Crit Rev Food Sci Nutr 46:197–205

    Article  CAS  Google Scholar 

  • Tanner JJ, Hecht RM, Krause KL (1996) Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25-Å resolution. Biochemistry 35:2597–2609

    Article  CAS  Google Scholar 

  • Tomazic SJ, Klibanov A (1988) Why is one Bacillus α-amylase more resistant against irreversible thermoinactivation than another? Biol Chem 263:3092–3096

    CAS  Google Scholar 

  • Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Biol 24:329–418

    Article  CAS  Google Scholar 

  • Violet M, Meunier JC (1989) Kinetic studies of the irreversible thermal inactivation of Bacillus licheniformis α-amylase. Biochem J 263:665–670

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Julio Polaina for the assistance on the molecular model of BACΔNC and the valuable suggestions. This work was supported by a research grant (NSC95-2313-B-241-003) from National Science Council of Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huei-Fen Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LL., Liu, JS., Wang, WC. et al. Glutamic acid 219 is critical for the thermostability of a truncated α-amylase from alkaliphilic and thermophilic Bacillus sp. strain TS-23. World J Microbiol Biotechnol 24, 619–626 (2008). https://doi.org/10.1007/s11274-007-9518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9518-0

Keywords

Navigation