Skip to main content
Log in

Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

α-Amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) are both important industrial enzymes with high similarity in structure but significant differences in thermostability. The mechanisms underlying this discrepancy are still poorly understood. Here, we investigated the role of two amino acids’ insertion on the thermostability of these two group amylases. A newly obtained thermophilic amylase AMY121 was found much closer to BLA in both primary structure and enzymological properties. Two amino acids’ insertion widespread among BAA group α-amylases was identified as one of the key factors leading to the thermostability differences, since thermostability of insertion mutants (AMY121-EG and AMY121-AA) from AMY121 significantly decreased, while that of deletion mutant from BAA increased. Moreover, we proposed that conformational disturbance caused by insertion mutation might weaken the calcium-binding affinity and consequently decrease the enzyme thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kloosterman WMJ, Jovanovic D, Brouwer SGM, Loos K (2014) Amylase catalyzed synthesis of glycosyl acrylates and their polymerization. Green Chem 16(1):203–210. doi:10.1039/C3gc41471j

    Article  CAS  Google Scholar 

  2. Guzman-Maldonado H, Paredes-Lopez O (1995) Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35(5):373–403. doi:10.1080/10408399509527706

    Article  CAS  Google Scholar 

  3. Vihinen M, Mantsala P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24(4):329–418. doi:10.3109/10409238909082556

    Article  CAS  Google Scholar 

  4. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94(2):137–155

    Article  Google Scholar 

  5. Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin YH, Liu EH, Guan HH, Hsieh YC, Chuankhayan P, Huang YC, Jeyaraman J, Liu MY, Chen CJ (2010) Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: implications for thermal stability. Acta Crystallogr F 66:121–129. doi:10.1107/S1744309109051938

    Article  CAS  Google Scholar 

  6. Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzyme Microb Tech 17(9):770–778

    Article  CAS  Google Scholar 

  7. Khajeh K, Ranjbar B, Naderi-Manesh H, Habibi AE, Nemat-Gorgani M (2001) Chemical modification of bacterial alpha-amylases: changes in tertiary structures and the effect of additional calcium. BBA-Protein Struct M 1548(2):229–237. doi:10.1016/S0167-4838(01)00236-9

    Article  CAS  Google Scholar 

  8. Violet M, Meunier JC (1989) Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J 263(3):665–670

    CAS  Google Scholar 

  9. Machius M, Wiegand G, Huber R (1995) Crystal Structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J Mol Biol 246(4):545–559

    Article  CAS  Google Scholar 

  10. Conrad B, Hoang V, Polley A, Hofemeister J (1995) Hybrid Bacillus amyloliquefaciens × Bacillus licheniformis α-amylases. Eur J Biochem 230(2):481–490

    CAS  Google Scholar 

  11. Fitter J (2005) Structural and dynamical features contributing to thermostability in alpha-amylases. Cell Mol Life Sci: CMLS 62(17):1925–1937. doi:10.1007/s00018-005-5079-2

    Article  CAS  Google Scholar 

  12. Zonouzi R, Khajeh K, Monajjemi M, Ghaemi N (2013) Role of the salt bridge between Arg176 and Glu126 in the thermal stability of the Bacillus amyloliquefaciens alpha-amylase (BAA). J Microbiol Biotechnol 23(1):7–14. doi:10.4014/jmb.1205.05062

    Article  CAS  Google Scholar 

  13. Trincone A (2010) Potential biocatalysts originating from sea environments. J Mol Catal B-Enzym 66(3–4):241–256. doi:10.1016/j.molcatb.2010.06.004

    Article  CAS  Google Scholar 

  14. Bernfeld P (1955) Amylases, alpha and beta. Methods Enzymol I:149–158

    Article  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  Google Scholar 

  16. Cardoso J, Emery A (1978) A new model to describe enzyme inactivation. Biotechnol Bioeng 20(9):1471–1477

    Article  CAS  Google Scholar 

  17. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32(14):e115. doi:10.1093/nar/gnh110

    Article  Google Scholar 

  18. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. doi:10.1038/nmeth.1701

    Article  CAS  Google Scholar 

  19. Sajedi RH, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar BA, Asoodeh A, Moradian F (2005) A Ca-independent alpha-amylase that is active and stable at low pH from the Bacillus sp KR-8104. Enzyme Microb Technol 36(5–6):666–671. doi:10.1016/j.enzmictec.2004.11.003

    Article  CAS  Google Scholar 

  20. Liu XD, Xu Y (2008) A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp YX-1: purification and characterization. Bioresource Technol 99(10):4315–4320. doi:10.1016/j.biortech.2007.08.040

    Article  CAS  Google Scholar 

  21. Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M (2008) Purification and biochemical characterization of a novel alpha-amylase from Bacillus licheniformis NH1—cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem 43(5):499–510. doi:10.1016/j.procbio.2008.01.017

    Article  CAS  Google Scholar 

  22. Liu XD, Xu Y (2008) A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour Technol 99(10):4315–4320. doi:10.1016/j.biortech.2007.08.040

    Article  CAS  Google Scholar 

  23. Liu Y, Shen W, Shi GY, Wang ZX (2010) Role of the calcium-binding residues Asp231, Asp233, and Asp438 in alpha-amylase of Bacillus amyloliquefaciens as revealed by mutational analysis. Curr Microbiol 60(3):162–166. doi:10.1007/s00284-009-9517-5

    Article  CAS  Google Scholar 

  24. Dong GQ, Vieille C, Savchenko A, Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microb 63(9):3569–3576

    CAS  Google Scholar 

  25. Nielsen AD, Pusey ML, Fuglsang CC, Westh P (2003) A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus alpha-amylase—the effect of calcium ions. BBA-Proteins Proteom 1652(1):52–63. doi:10.1016/j.bbapap.2003.08.002

    Article  CAS  Google Scholar 

  26. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 268(32):24394–24401

    CAS  Google Scholar 

  27. Boren K, Andersson P, Larsson M, Carlsson U (1999) Characterization of a molten globule state of bovine carbonic anhydrase-III: loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. BBA-Protein Struct M 1430(1):111–118. doi:10.1016/S0167-4838(98)00283-0

    Article  CAS  Google Scholar 

  28. Kundrat MD, Autschbach J (2006) Time dependent density functional theory modeling of specific rotation and optical rotatory dispersion of the aromatic amino acids in solution. J Phys Chem A 110(47):12908–12917. doi:10.1021/Jp064636

    Article  CAS  Google Scholar 

  29. Brown I, Dafforn TR, Fryer PJ, Cox PW (2013) Kinetic study of the thermal denaturation of a hyperthermostable extracellular alpha-amylase from Pyrococcus furiosus. Biochimica et biophysica acta 1834 12:2600–2605. doi:10.1016/j.bbapap.2013.09.008

    Article  Google Scholar 

  30. Yang J, Li J, Mai ZM, Tian XP, Zhang S (2013) Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp SCSIO 20089. J Biosci Bioeng 115(6):628–632. doi:10.1016/j.jbiosc.2012.12.013

    Article  CAS  Google Scholar 

  31. Gohel V, Naseby DC (2007) Thermal stabilization of chitinolytic enzymes of Pantoea dispersa. Biochem Eng J 35(2):150–157. doi:10.1016/j.bej.2007.01.009

    Article  CAS  Google Scholar 

  32. Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C (2000) Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J Mol Biol 301(4):1041–1057. doi:10.1006/jmbi.2000.4025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Administration of Ocean and Fisheries of Guangdong Province (GD2012-D01-002), National High Technology Research and Development Program of China (863 Program, 2012AA092104), Public Science and Technology Research Funds Projects of Ocean (Grant: 201305018), the National Natural Science Foundation of China (Grant NO. 41406193), “Strategic Priority Research Program” of the Chinese Academy of Sciences, Grant NO. XDA10030400, the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201301) and the Key Research Program of the Chinese Academy of Sciences, Grant NO.KSCX2-EW-B-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Zhang.

Additional information

Lizhen Li and Jian Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yang, J., Li, J. et al. Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121. Bioprocess Biosyst Eng 38, 871–879 (2015). https://doi.org/10.1007/s00449-014-1330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1330-2

Keywords

Navigation