Skip to main content

Advertisement

Log in

Spatial and temporal dynamics of diffusive methane emissions in the Okavango Delta, northern Botswana, Africa

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Global warming is associated with the continued increase in the atmospheric concentrations of greenhouse gases; carbon dioxide, methane (CH4) and nitrous oxide. Wetlands constitute the largest single natural source of atmospheric CH4 in the world contributing between 100 and 231 Tg year−1 to the total budget of 503–610 Tg year−1, approximately 60 % of which is emitted from tropical wetlands. We conducted diffusive CH4 emission measurements using static chambers in river channels, floodplains and lagoons in permanent and seasonal swamps in the Okavango Delta, Botswana. Diffusive CH4 emission rates varied between 0.24 and 293 mg CH4 m−2 h−1, with a mean (±SE) emission of 23.2 ± 2.2 mg CH4 m−2 h−1 or 558 ± 53 mg CH4 m−2 day−1. These emission rates lie within the range reported for other tropical wetlands. The emission rates were significantly higher (P < 0.007) in permanent than in seasonal swamps. River channels exhibited the highest average fluxes at 31.3 ± 5.4 mg CH4 m−2 h−1 than in floodplains (20.4 ± 2.5 mg CH4 m−2 h−1) and lagoons (16.9 ± 2.6 mg CH4 m−2 h−1). Diffusive CH4 emissions in the Delta were probably regulated by temperature since emissions were highest (20–300 mg CH4 m−2 h−1) and lowest (0.2–3.0 mg m−2 h−1) during the warmer-rainy and cooler winter seasons, respectively. Surface water temperatures between December 2010 and January 2012 varied from 15.3 °C in winter to 33 °C in summer. Assuming mean inundation of 9,000 km2, the Delta’s annual diffusive emission was estimated at 1.8 ± 0.2 Tg, accounting for 2.8 ± 0.3 % of the total CH4 emission from global tropical wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aim J, Saarnio S, Nykinen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N20 fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186

    Google Scholar 

  • Altor AE, Mitsch WJ (2006) Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol Eng 28:224–234

    Article  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 16(1–4):261–320

    Article  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harriss RC, Wilson JO, Melack JM (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93:1571–1582

    Article  CAS  Google Scholar 

  • Bartlett KB, Crill PM, Bonassi JA, Richey JE, Harriss RC (1990) Methane flux from the Amazon River floodplain: emissions during rising water. J Geophys Res 95:16773–16788

    Article  CAS  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Bio Biochem 30:729–741

    Article  CAS  Google Scholar 

  • Bergman I, Klarqvist M, Nilsson M (2000) Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiol Ecol 33:181–189

    Article  CAS  PubMed  Google Scholar 

  • Bonyongo MC, Bredenkamp GJ, Veenendaal E (2000) Floodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana. S Afr J Bot 66:15–21

    Google Scholar 

  • Boon PI, Mitchell A (1995) Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiol Ecol 18:175–190

    Article  CAS  Google Scholar 

  • Cao M, Gregson K, Marshall S (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32(19):3293–3299

    Article  CAS  Google Scholar 

  • Cawley KM, Wolski P, Mladenov N, Jaffé R (2012) Dissolved organic matter biogeochemistry along a transect of the Okavango Delta, Botswana. Wetlands 32:475–486

    Article  Google Scholar 

  • Chanton JP, Dacey JWH (1991) Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 65–92

    Chapter  Google Scholar 

  • Chanton JP, Martens CS, Kelley CA (1989) Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol Oceanog 34(5):807–819

    Article  CAS  Google Scholar 

  • Christensen TR, Prentice IC, Kalpan J, Haxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra: an ecosystem source modelling approach. Tellus 48B:652–661

    Article  CAS  Google Scholar 

  • Christensen TR, Ekberg A, Strom L, Mastepanov M, Panikov N, Oquist M, Svenson BH, Nykanen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30:10–13

    Article  Google Scholar 

  • Couwenberg J, Fritz C (2012) Towards developing IPCC methane ‘emission factors’ for peatlands (organic soils). Mires Peat 10:1–17

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Devol AH, Richey JE, Clark WA, King SL, Martinelli LA (1988) Methane emissions to the troposphere from the Amazon floodplain. J Geophys Res 93:1583–1592

    Article  CAS  Google Scholar 

  • Ding W, Cai Z, Tsuruta H (2005) Factors affecting seasonal variation of methane concentration in water in a freshwater marsh vegetated with Carex lasiocarpa. Biol Fertil Soils 41:1–8

    Article  CAS  Google Scholar 

  • Dise NB, Gorham E, Verry ES (1993) Environmental factors controlling methane emissions from peatlands in northern Minnesota. J Geophys Res 98:10583–10594

    Article  Google Scholar 

  • Ellery K, Ellery W (1997) Plants of the Okavango Delta: a field guide. Tsaro Publishers, Dalbridge

    Google Scholar 

  • Ellery WN, McCarthy TS, Smith ND (2003) Vegetation, hydrology and sedimentation patterns on the major distributary system of the Okavango fan, Botswana. Wetlands 23(2):357–375

    Article  Google Scholar 

  • Ford PW, Boon PI, Lee K (2002) Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485:97–110

    Article  CAS  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Gumbricht T, McCarthy J, McCarthy TS (2004a) Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surf Proc Land 29:15–29

    Article  Google Scholar 

  • Gumbricht T, Wolski P, Frost P, McCarthy TS (2004b) Forecasting the spatial extent of the annual flood in the Okavango delta, Botswana. J Hydrol 290:178–191

    Article  Google Scholar 

  • Hart RC (1997) A limnological profile of the upper Okavango Delta at low water level. South Afr J Aquat Sci 23(2):21–33

    Google Scholar 

  • Healy RW, Striegl RG, Russell TF, Hutchinson GL, Livingston GP (1996) Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. Soil Sci Soc Am J 60:740–747

    Article  CAS  Google Scholar 

  • IPCC (1992) Climate change 1992: the supplementary report to the IPCC scientific assessment. In: Houghton JT, Callander BA, Varney SK (eds). Cambridge University Press, Cambridge, p 205

  • IPCC (1996) Climate change 1995: the science of climate change: Contribution of Working Group I to the second assessment report of the intergovernmental panel on climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds). Cambridge University Press, Cambridge, p 572

  • Johansson AE, Gustavsson A-M, Oquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater—seasonal and spatial distribution and dependence on edaphic factors. Water Res 38:3960–3970

    Article  CAS  PubMed  Google Scholar 

  • Joyce J, Jewell PW (2003) Physical controls on methane ebullition from reservoirs and lakes. Environ Eng Geosci 9(2):167–178

    Article  Google Scholar 

  • Krah M, McCarthy TS, Huntsman-Mapila P, Wolski P, Annegarn H, Sethebe K (2006) Nutrient budget in the seasonal wetland of the Okavango Delta, Botswana. Wetl Ecol Manag 14:253–267

    Article  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Mackay AW, Davidson T, Wolski P, Mazebedi R, Masamba WRL, Huntsman-Mapila P, Todd M (2011) Spatial and seasonal variability in surface water chemistry in the Okavango Delta, Botswana: a multivariate approach. Wetlands 31:815–829

    Article  Google Scholar 

  • Maltby E, Turner RE (1983) Wetlands of the world. Geogr Mag 55(1):12–17

    Google Scholar 

  • Marinho CC, Palma Silva C, Albertoni EF, Trindade CR, Esteves FA (2009) Seasonal dynamics of methane in the water column of two subtropical lakes differing in trophic status. Braz J Biol 69(2):281–287

    Article  CAS  PubMed  Google Scholar 

  • Matthews E, Fung I (1987) Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cy 1:61–86

    Article  CAS  Google Scholar 

  • McCarthy TS, Ellery WN (1998) The Okavango Delta. Trans Roy Soc S Afr 53(2):157–182

    Article  Google Scholar 

  • McCarthy TS, Franey NJ, Ellery WN, Ellery K (1993) T he use of SPOT imagery as an aid to the study of environmental processes in the wetlands of the Okavango Delta, Botswana. S Afr J Sci 89:432–436

    Google Scholar 

  • McCarthy TS, Ellery WN, Bloem A (1998) Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibious L.) in the Okavango Delta, Botswana. Afr J Ecol 36:44–56

    Article  Google Scholar 

  • McCarthy JM, Gumbricht T, McCarthy T, Frost P, Wessels K, Seidel F (2000) Flooding patterns of the Okavango wetlands in Botswana between 1972 and 2000. Ambio 32(7):453–457

    Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier- Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N (1997) Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fertil Soils 24:399–405

    Article  CAS  Google Scholar 

  • Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manag 18:573–586

    Article  CAS  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander U, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597

    Article  Google Scholar 

  • Mladenov N (2004) Evaluating the effects of hydrologic change in the Okavango Delta of Botswana: analyses of aquatic organic matter transport and ecosystem economics. PhD Thesis.Colorado, University of Colorado Boulder

  • Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 25(3):622–638

    Article  Google Scholar 

  • Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–38

    Article  CAS  Google Scholar 

  • Nahlik AM, Mitsch WJ (2011) Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob Change Biol 17:1321–1334

    Article  Google Scholar 

  • Neue HU, Gaunt LL, Wang LP, Becker-Heidmann P, Quijano C (1997) Carbon in tropical wetlands. Geoderma 79:163–185

    Article  CAS  Google Scholar 

  • Nykinen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peat- lands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob Biogeochem Cy 12:53–69

    Article  Google Scholar 

  • Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Silva J, As JV, VanderPost C (2006) Species diversity of the Okavango Delta, Botswana. Aquat Sci 68:310–337

    Article  Google Scholar 

  • Ramberg L, Lindholm M, Hessen DO, Murray-Hudson M, Bonyongo C, Heinl M, Masamba W, VanderPost C, Wolski P (2010) Aquatic ecosystem responses to fire and flood size in the Okavango Delta: observations from the seasonal floodplains. Wetl Ecol Manag 18:587–595

    Article  Google Scholar 

  • Rulik M, Cap L, Hlavacova E (2000) Methane in the hyporeic zone of a small lowland stream (Sitka, Czech Republic). Limnologica 30(4):359–366

    Article  CAS  Google Scholar 

  • Rutz D (2004) The influence of fire on site productivity in southern Africa (study site: Okavango Delta, Botswana). Technische Universitat Munich, Dissertation

    Google Scholar 

  • Schulz S, Matsuyama H, Conrad R (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22:207–213

    Article  CAS  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27:35–60

    Article  Google Scholar 

  • Singh SN, Kulshreshtha K, Agnihotri S (2000) Seasonal dynamics of methane emission from wetlands. Chemosphere 2:39–46

    CAS  Google Scholar 

  • Smith LK, Lewis WMJ, Chanton JP, Cronin G, Hamilton SK (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51:113–140

    Article  Google Scholar 

  • Sorrel BK, Boon PI (1992) Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshw Biol 27(3):435–445

    Article  Google Scholar 

  • US-EPA (United States Environmental Protection Agency) (1990) Greenhouse gas emissions from agriculture, Vol. 1. Office of Policy Analysis, U.S. Environmental Protection Agency, Washington, D.C

  • Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63:117–134

    Article  CAS  Google Scholar 

  • Wang Z, Zeng D, Patrick WH Jr (1996) Methane emissions from natural wetlands. Environ Monit Assess 42:143–161

    Article  CAS  PubMed  Google Scholar 

  • Wassmann R, Thein UG, Whiticar MJ, Rennenberg H, Seiler W, Junk WJ (1992) Methane emissions from the Amazon floodplain: characterization of the production and transport. Global Biogeochem Cy 6:3–13

    Article  CAS  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22(1):73–94

    Article  CAS  Google Scholar 

  • Wilson BH (1973) Some natural and man-made changes in the channels of the Okavango Delta. Botswana Notes Rec 5:132–153

    Google Scholar 

  • Wolski P, Gumbricht T, McCarthy TS (2002) Assessing future change in the Okavango Delta: The use of a regression model of the maximum annual flood in a Monte Carlo Simulation. Conference on Environmental Monitoring of Tropical and Sub-tropical Wetlands, 4–8 Dec 2002, Maun

  • Wolski P, Murry-Hudson M, Fernkvist P, Liden A, Huntsman-Mapila P (2005) Islands in the Okavango Delta as sinks of water-borne nutrients. Botswana NotesRec 37:253–263

    Google Scholar 

Download references

Acknowledgments

This study was funded by the global change SysTem for Analysis, Research and Training (START), Washington DC, through a 2009 GEC Water/Land Research Grant to Dr Kelebogile Mfundisi and the Office of Research and Development of the University of Botswana (UB-ORD) research grants to the second author. Guma Lagoon Camp provided camping space, self-catering facility, and boat to the research team during sampling at Guma on the northwestern side of the Okavango Delta. The authors are grateful to Prof. Robert E, Hecky of the University of Minnesota-Duluth, USA, for reviewing the first draft of the manuscript. We are also grateful to Ms Kenelwe Kgokong and Ms Minsozi Zinzy Mujo who participated in the project as research assistants. We do not forget nor underrate the valuable field assistance provided by Messrs. Kaelo Makati, Wilfred Khaneguba, and Ineelo J. Mosie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangaliso J. Gondwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondwe, M.J., Masamba, W.R.L. Spatial and temporal dynamics of diffusive methane emissions in the Okavango Delta, northern Botswana, Africa. Wetlands Ecol Manage 22, 63–78 (2014). https://doi.org/10.1007/s11273-013-9323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-013-9323-5

Keywords

Navigation