Skip to main content

Advertisement

Log in

Distribution and population structure of four Central Amazonian high-várzea timber species

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albernaz AL, Ayres JM (1999) Logging along the middle Solimões River. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, NY, pp 135–151

    Google Scholar 

  • Ayres JM (1993) As matas de várzea do Mamirauá. CNPq––Sociedade Civil Mamirauá. Estudos de Mamirauá, vol I. Brasília

  • Ayres JM, Alves AR, Queiroz HL et al (1998) Mamirauá. Die Erhaltung der Artenvielfalt in einem amazonischen Überschwemmungswald. In: De Freitas MLD (eds) Amazonien: Himmel der Neuen Welt. BMBF, Bonn, pp 262–274

  • Barros AC, Uhl C (1995) Logging along the Amazon River and estuary: patterns, problems, and potential. For Ecol Manag 77:87–105

    Article  Google Scholar 

  • Bazzaz FA (1991) Regeneration of tropical forests: physiological responses of pioneer and secondary species. In: Gomez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. The Parthenon Publishing Group, London, pp 91–118

    Google Scholar 

  • Bentes-Gama MM, Scolforo JRS, Gama JRV et al (2002) Estrutura e valorização de uma floresta de várzea alta na Amazônia. Cerne 8(1):88–102

    Google Scholar 

  • Brower JE, Zar JH (1984) Field and laboratory methods for general ecology, 2nd edn. WC Brown Publ, Iowa

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forest. FAO Forestry paper 134, Rome

  • Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rainforest. J Ecol 86:101–112

    Article  Google Scholar 

  • Conserva AS (2006) Germinação de sementes, emergência, e recrutamento de plântulas de dez espécies arbóreas das várzeas das Reservas de Desenvolvimento Sustentável Amanã e Mamirauá, Amazônia Central. Dissertation, Instituto Nacional de Pesquisas da Amazônia, Manaus

  • De Simone O, Haase K, Müller E et al (2002) Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biol 2:515–522

    Article  Google Scholar 

  • Ebdon D (1998) Statistics in geography. Basil Blackwell, Oxford

    Google Scholar 

  • Gottsberger G (1978) Seed dispersal by fish in inundated regions of Humaitá, (Amazonas). Biotropica 10:170–183

    Article  Google Scholar 

  • Goulding M (1983) The role of fishes in seed dispersal and plant distribution in Amazonian floodplain ecosystems. In: Kubitzki K (ed) Dispersal and distribution, vol 7. Sonderarbeiten des naturwissenschaftlichen Vereins Hamburg, pp 271–283

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959

    Article  Google Scholar 

  • Hubbell SP (1995) Toward a global research strategy on the ecology of natural tropical forests to meet conservation and management needs. In: Lugo AE, Lowe C (eds) Tropical forests: management and ecology. Springer, Berlin, pp 423–437

    Google Scholar 

  • IBAMA (2000) Projeto de manejo dos recursos naturais das várzeas. Manaus

  • Junk WJ, Bayley PB, Sparks RE (1989) The Flood pulse concept in river-floodplain systems. In: Dodge D (ed) Proceedings of the international large river symposium, Ottawa, vol 106. Canadian Special Publications of Fisheries and Aquatic Sciences, pp 110–127

  • Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (2000) Actual use and options for the sustainable management of the central Amazon floodplain: discussion and conclusions. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazonian floodplain: actual use and options for sustainable management. Backhuys Publishers, Leiden, pp 535–579

    Google Scholar 

  • Klenke M, Ohly JJ (1993) Wood from floodplains. In: Junk WJ, Bianchi HK (eds) 1st SHIFT workshop, Belém, Brazil. GKSS-Researchcenter, Geesthacht

    Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 163:285–304

    Article  Google Scholar 

  • Kubitzki K, Ziburski A (1994) Seed dispersal in floodplain forest of Amazonian. Biotropica 26(1):30–43

    Article  Google Scholar 

  • Kvist LP, Andersen MK, Stagegaard J et al (2001) Extraction from woody forest plants in flood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. For Ecol Manag 150:147–174

    Article  Google Scholar 

  • Lieberman D, Lieberman M (1987) Forest tree growth and dynamics at La Selva, Costa Rica (1969–1992). J Trop Ecol 3:347–358

    Article  Google Scholar 

  • Morisita M (1959) Measuring of the dispersion of individuals and analysis of the distribution patterns. Mem Fac Sci Kyushi Univ E2:214–235

    Google Scholar 

  • Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32

    Google Scholar 

  • Nebel G, Meilby H (2005) Growth and population structure of timber species in Peruvian Amazon floodplains. For Ecol Manag 215:196–211

    Article  Google Scholar 

  • Nebel G, Kvist L, Vanclay JK et al (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon I. Overstorey. Forest Ecol Manag 150:27–57

    Article  Google Scholar 

  • Nogueira EM, Nelson BW, Fearnside PM (2005) Wood density in dense forest in Central Amazonia, Brazil. For Ecol Manag 208:261–286

    Article  Google Scholar 

  • Oliveira Wittmann A, Piedade MTF, Parolin P, Wittmann F (2007) Germination in four low-várzea tree species of Central Amazonia. Aquat Bot 86(3):197–203

    Article  Google Scholar 

  • Parolin P (2002) Submergence tolerance versus escape from submergence:two strategies of seedling establishment in Amazonian floodplains. Environ Exp Bot 48(2):177–186

    Article  Google Scholar 

  • Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot 103:359–376

    Article  PubMed  Google Scholar 

  • Parolin P, De Simone O, Haase K et al (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105(1):129–139

    Article  PubMed  Google Scholar 

  • Pélissier R, Dray S, Sabatier D (2002) Within-plot relationships between tree species occurrences and hydrological soil constraints: an example in French Guiana investigated through canonical correlation analysis. Plant Ecol 162:143–156

    Article  Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Article  Google Scholar 

  • Pires JM, Prance GT (1985) The vegetation types of the Brazilian Amazon. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon Publishers, Oxford, pp 109–145

    Google Scholar 

  • Pitman NCA, Terborgh J, Silman MR et al (2002) A comparison of tree species diversity in two upper Amazonian forests. Ecology 83(11):3210–3224

    Article  Google Scholar 

  • Pitman NCA, Cerón CE, Reyes CI et al (2005) Catastrophic natural origin of a species-poor tree community in the world’s richest forest. J Trop Ecol 21:559–568

    Article  Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 3(1):26–38

    Article  Google Scholar 

  • Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de floresta de várzea da Amazônia Central por meio de métodos dendrocronológicos. Dissertation, Instituto Nacional de Pesquisas da Amazônia, Manaus

  • Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597

    Article  Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF et al (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño––southern oscillation effect. Glob Change Biol 10:683–692

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    Article  PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M et al (2007) Management criteria for Ficus insipida (Willd.) Moraceae in Amazonian whitewater floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664

    Article  Google Scholar 

  • Sombroek W (2000) Amazon landforms and soils in relation to biological diversity. Acta Amazon 30(1):81–100

    Google Scholar 

  • Swaine MD, Beer T (1976) Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae). New Phytol 78:695–708

    Article  Google Scholar 

  • Terborgh J, Andresen E (1998) The composition of Amazonian forests: patterns at local and regional scales. J Trop Ecol 14:645–664

    Article  Google Scholar 

  • Voesenek LACJ, Blom CWPM (1999) Stimulated shoot elongation: a mechanism of semi-aquatic plants to avoid submergence stress. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York

    Google Scholar 

  • Voesenek LACJ, Benschop JJ, Bou J et al (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205–211

    Article  CAS  PubMed  Google Scholar 

  • Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–537

    Article  Google Scholar 

  • Whitmore TC (1995) Perspectives in tropical rain forest research. In: Lugo AE, Lowe C (eds) Tropical forests: ecology and management. Springer-Verlag, Berlin, pp 397–407

    Google Scholar 

  • Wiemann MC, Williamson GB (1989) Wood specific gravity gradients in tropical dry and montane rain forest trees. Am J Bot 76:924–928

    Article  Google Scholar 

  • Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544

    Article  Google Scholar 

  • Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37(4):609–619

    Article  Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote sensing techniques. J Trop Ecol 18:805–820

    Article  Google Scholar 

  • Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manag 196:199–212

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Montero JC et al (2006a) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Parolin P et al (2006b) Wood specific gravity of trees in Amazonian white-water forests in relation to flooding. IAWA J 27(3):255–266

    Google Scholar 

  • Wittmann F, Zorzi BT, Tizianel FAT et al (2008) Tree species composition, structure, and aboveground wood biomass of a riparian forest of the lower Miranda River, Southern Pantanal, Brazil. Folia Geobot 43:397–411

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (in press) Phytogeography, species diversity, community structure and dynamics of Amazonian várzea forests. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Ecology and management of Amazonian floodplain forests. Ecological Series, Springer Verlag, Berlin

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. ecological studies, vol 126. Springer-Verlag, Berlin, pp 223–266

    Google Scholar 

  • Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200

    Google Scholar 

  • Zent EL, Zent S (2004) Floristic composition, structure, and diversity of four forest plots in the Sierra Maigualida, Venezuelan Guayana. Biodivers Conserv 13:2453–2484

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the FAPEAM (Fundacão de Amparo à Pesquisa do Estado do Amazonas) for the first author’s graduate student fellowship. Field work was made possible by financial support from the CNPq (680021/2005-1), GEOMA, and the MAUA and INPA/Max Planck Project, Manaus. We thank the Institute of Sustainable Development Research Mamirauá, Tefé, for logistic support, and Christine Lucas for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Wittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Marinho, T.A., Piedade, M.T.F. & Wittmann, F. Distribution and population structure of four Central Amazonian high-várzea timber species. Wetlands Ecol Manage 18, 665–677 (2010). https://doi.org/10.1007/s11273-010-9186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-010-9186-y

Keywords

Navigation