Skip to main content
Log in

Distribution and Bioavailability of Copper in the Soil of a Young Steep Vineyard Applying Different Extraction Procedures and Pseudo-Total Digestion

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The Cu accumulation in vineyard soils is a major ecological and toxicological burden. However, assessing the Cu in young vineyards with the intensive use of agrochemicals has received little attention. Therefore, for the first time, this study evaluates the accumulation and bioavailability of Cu in the soils of the five-year-old vineyard of an emerging grape-growing region in Phu Tho Province, NW Vietnam using different single extraction procedures (CH3COOH, CaCl2, and Na2-EDTA) and pseudo-total digestion. The ecological risk of Cu is also calculated by the contamination factor and the ecological risk factor. Results reveal that with the short-term use of Cu-fungicides, in the studied soil, Cu is present in an acceptable medium level compared to other reports. However, Cu enrichment can be noticed in the topsoil. A higher mean pseudo-total Cu content is found in the topsoil (0-20 cm) (42.7 mg/kg) compared to the subsoil (20-40-60 cm) (37.0 mg/kg). In addition, due to soil erosion, a downslope accumulation of Cu can be indicated. The extractants are effective comparing to the pseudo-total concentrations in the following order Na2-EDTA ˃ CH3COOH ˃ CaCl2. Based on the bioavailable contents, Cu shows an overall low mobility. The contamination factor implies moderate contamination of the soil. These indicate that Cu is slightly influenced by human activities, such as fungicide application. Although an overall low adverse ecological risk is observed, understanding of the potential enrichment of Cu in the soil of young vineyards can contribute to the development of environmentally friendly vineyard management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The raw data is available on request from author.

References

  • Alibrahim, Z. O., & Williams, C. D. (2016). Assessment of bioavailability of some potential toxic metals in miningaffected soils using EDTA extraction and principle component analysis (PCA) approach, Derbyshire UK. Interdiscipilinary Journal of Chemistry, 1(2), 58–65. https://doi.org/10.15761/IJC.1000110

    Article  Google Scholar 

  • Ambrosini, V. G., Rosa, D. J., Corredor Prado, J. P., Borghezan, M., Bastos de Melo, G. W., de Sousa Soares, C. R. F., et al. (2015). Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270–280. https://doi.org/10.1016/j.plaphy.2015.08.012

    Article  CAS  Google Scholar 

  • Babcsányi, I., Chabaux, F., Granet, M., Meite, F., Payraudeau, S., Duplay, J., & Imfeld, G. (2016). Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. The Science of the Total Environment, 557-558, 154–162. https://doi.org/10.1016/j.scitotenv.2016.03.037

    Article  CAS  Google Scholar 

  • Borgese, L., Federici, S., Zacco, A., Gianoncelli, A., Rizzo, L., Smith, D. R., et al. (2013). Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy. Environmental Science and Pollution Research, 20(7), 5067–5075. https://doi.org/10.1007/s11356-013-1473-8

    Article  CAS  Google Scholar 

  • Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., et al. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307. https://doi.org/10.1016/j.chemosphere.2016.07.104

    Article  CAS  Google Scholar 

  • Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., de Moraes, M. P., et al. (2014). Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 60(5), 609–624. https://doi.org/10.1080/03650340.2013.826348

    Article  CAS  Google Scholar 

  • Carter, M., & Gregorich, E. (2007). Soil Sampling and Methods of Analysis. Boca Raton: CRC Press. Chapter 10 - Trace Element Assessment. https://doi.org/10.1201/9781420005271

  • Chen, H. Y., Teng, Y. G., Lu, S. J., Wang, Y. Y., & Wang, J. S. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

    Article  Google Scholar 

  • Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Díaz-Raviña, M., & Arias-Estévez, M. (2009). Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula). Geoderma, 153(1-2), 119–129. https://doi.org/10.1016/j.geoderma.2009.07.024

    Article  CAS  Google Scholar 

  • Fernández-Calviño, D., Pateiro-Moure, M., López-Períago, E., Arias-Estévez, M., & Nóvoa-Muñoz, J. C. (2008). Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW Spain). European Journal of Soil Science, 59, 315–326. https://doi.org/10.1111/j.1365-2389.2007.01004.x

    Article  CAS  Google Scholar 

  • Flores-Vélez, L. M., Ducaroir, J., Jaunet, A. M., & Robert, M. (1996). Study of the distribution of copper in an acid sandy vineyard soil by three different methods. European Journal of Soil Science, 47(4), 523–532. https://doi.org/10.1111/j.1365-2389.1996.tb01852.x

    Article  Google Scholar 

  • Girotto, E., Ceretta, C. A., Brunetto, G., Miotto, A., Tiecher, T. L., De Conti, L., et al. (2014). Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environmental Monitoring and Assessment, 186(12), 9051–9063. https://doi.org/10.1007/s10661-014-4065-2

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Imfeld, G., Guyot, B., Wiegert, C., et al. (2023). Soil Management Drives Copper and Zinc Export in Runoff from Vineyard Plots. Water, Air, & Soil Pollution, 234, 357. https://doi.org/10.1007/s11270-023-06352-2

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., & Habibullah-Al-Mamun, M. (2015). Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment, 187(5). https://doi.org/10.1007/s10661-015-4533-3

  • Jez, E., Pellegrini, E., & Contin, M. (2023). Copper Bioavailability and Leaching in Conventional and Organic Viticulture under Environmental Stress. Applied Sciences, 13, 2595. https://doi.org/10.3390/app13042595

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., Bravo, S., Amorós, J. A., et al. (2022). Soil and Leaf Mineral Element Contents in Mediterranean Vineyards: Bioaccumulation and Potential Soil Pollution. Water, Air, and Soil Pollution, 233, 20. https://doi.org/10.1007/s11270-021-05485-6

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants (4th ed.). CRC Press.

    Google Scholar 

  • Landon, J. R. (1991). Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Sub Tropics (p. 474). Longman Scientific and Technical.

    Google Scholar 

  • Le, V. S., Lesueur, D., Herrmann, L., Hudek, L., Quyen, L. N., & Brau, L. (2021). Sustainable tea production through agroecological management practices in Vietnam: a review. Environmental Sustainability, 4(4), 589–604. https://doi.org/10.1007/s42398-021-00182-w

    Article  Google Scholar 

  • Li, N., Kang, Y., Pan, W., Zeng, L., Zhang, Q., & Luo, J. (2015). Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of the Total Environment, 521-522, 144–151. https://doi.org/10.1016/j.scitotenv.2015.03.081

    Article  CAS  Google Scholar 

  • Liu, C.-A., Li, F.-R., Liu, C.-C., Zhang, R.-H., Zhou, L.-M., Jia, Y., et al. (2013). Yield-increase effects via improving soil phosphorus availability by applying K2SO4 fertilizer in calcareous–alkaline soils in a semi-arid agroecosystem. Field Crops Research, 144, 69–76. https://doi.org/10.1016/j.fcr.2013.01.016

    Article  Google Scholar 

  • Liu, G., Yu, Y., Hou, J., Xue, W., Liu, X., Liu, Y., et al. (2014). An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory. Ecological Indicators, 47, 210–218.

    Article  CAS  Google Scholar 

  • Luo, W., Lu, Y., Giesy, J. P., Wang, T., Shi, Y., Wang, G., et al. (2007). Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environmental Geochemistry and Health, 29(6), 459–471.

    Article  CAS  Google Scholar 

  • Milićević, T., Aničić Urošević, M., Relić, D., Jovanović, G., Nikolić, D., Vergel, K., & Popović, A. (2020). Environmental pollution influence to soil–plant–air system in organic vineyard: bioavailability, environmental, and health risk assessment. Environmental Science and Pollution Research, 28, 3361–3374. https://doi.org/10.1007/s11356-020-10649-8

    Article  CAS  Google Scholar 

  • Milićević, T., Relić, D., Škrivanj, S., Tešić, Ž., & Popović, A. (2017). Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion. Chemosphere, 171, 284–293. https://doi.org/10.1016/j.chemosphere.2016.12.090

    Article  CAS  Google Scholar 

  • Milićević, T., Urošević, M. A., Relić, D., Vuković, G., Škrivanj, S., & Popović, A. (2018). Bioavailability of potentially toxic elements in soil–grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment. Science of the Total Environment, 626, 528–545. https://doi.org/10.1016/j.scitotenv.2018.01.094

    Article  CAS  Google Scholar 

  • Mirlean, N., Roisenberg, A., & Chies, J. O. (2007). Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environmental Pollution, 149(1), 10–17. https://doi.org/10.1016/j.envpol.2006.12.024

    Article  CAS  Google Scholar 

  • Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., Karimi, R., & Riyahi Bakhtyari, H. R. (2019). Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health, 42, 27–43. https://doi.org/10.1007/s10653-019-00242-5

    Article  CAS  Google Scholar 

  • Nunes, J., Ramos-Miras, J., Lopez-Piñeiro, A., Loures, L., Gil, C., Coelho, J., & Loures, A. (2014). Concentrations of available heavy metals in mediterranean agricultural soils and their relation with some soil selected properties: A case study in typical mediterranean soils. Sustainability, 6(12), 9124–9138. https://doi.org/10.3390/su6129124

    Article  Google Scholar 

  • Omdi, F. E., Daoudi, L., & Fagel, N. (2018). Origin and distribution of clay minerals of soils in semi-arid zones: example of Ksob watershed (Western High Atlas, Morocco). Applied Clay Science, 163, 81–91. https://doi.org/10.1016/j.clay.2018.07.013

    Article  CAS  Google Scholar 

  • Pham, N. T. H., Babcsányi, I., Balling, P., & Farsang, A. (2022). Accumulation patterns and health risk assessment of potentially toxic elements in the topsoil of two sloping vineyards (Tokaj-Hegyalja, Hungary). Journal of Soils and Sediments, 22, 2671–2689. https://doi.org/10.1007/s11368-022-03252-6

    Article  CAS  Google Scholar 

  • Pham, N. T. H., Babcsányi, I., & Farsang, A. (2021). Ecological risk and enrichment of potentially toxic elements in the soil and eroded sediment in an organic vineyard (Tokaj Nagy Hill, Hungary). Environmental Geochemistry and Health, 44(6), 1893–1909. https://doi.org/10.1007/s10653-021-01076-w

    Article  CAS  Google Scholar 

  • Pinto, E., Almeida, A. A., & Ferreira, I. M. P. L. V. O. (2015). Assessment of metal(loid)s phytoavailability in intensive agricultural soils by the application of single extractions to rhizosphere soil. Ecotoxicology and Environmental Safety, 113, 418–424.

    Article  CAS  Google Scholar 

  • Poggere, G., Gasparin, A., Barbosa, J. Z., Melo, G. W., Corrêa, R. S., & Motta, A. C. V. (2023). Soil contamination by copper: sources, ecological risks, and mitigation strategies in Brazil. Journal of Trace Elements and Minerals, 4, 100059. https://doi.org/10.1016/j.jtemin.2023.100059

    Article  Google Scholar 

  • Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.

    Article  CAS  Google Scholar 

  • QCVN 03:2023/BTNMT. (2023). National technical regulation on Soil Quality. Ministry of Natural Resources and Environment, Hanoi, Vietnam (in Vietnamese).

  • Quevauviller, P. H. (1998). Operationally defined extraction procedures for soil and sediment analysis. I. Standardization. Trends in Analytical Chemistry, 17, 289–298.

    Article  CAS  Google Scholar 

  • Quevauviller, P. H. (2002). Operationally-defined extraction procedures for soil and sediment analysis. Part 3: new CRMs for trace element extractable contents. Trends in Analytical Chemistry, 21, 774–785.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Lachica, M., Barahona, E., Rauret, G., Ure, A., Gomez, V., & Muntau, H. (1996). Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Science of the Total Environment, 178, 127–132.

    Article  CAS  Google Scholar 

  • Ribolzi, O., Valles, V., Gomez, L., & Voltz, M. (2002). Speciation and origin of particulate copper in runoff water from a Mediterranean vineyard catchment. Environmental Pollution, 117(2), 261–271. https://doi.org/10.1016/s0269-7491(01)00274-3

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011

    Article  CAS  Google Scholar 

  • Santos, S., Costa, C. A. E., Duarte, A. C., Scherer, H. W., Schneider, R. J., Esteves, V. I., & Santos, E. B. H. (2010). Influence of different organic amendments on the potential availability of metals from soil: A study on metal fractionation and extraction kinetics by EDTA. Chemosphere, 78(4), 389–396. https://doi.org/10.1016/j.chemosphere.2009.11.008

    Article  CAS  Google Scholar 

  • Sereni, L., Guenet, B., & Lamy, I. (2023). Mapping risks associated with soil copper contamination using availability and bio-availability proxies at the European scale. Environmental Science and Pollution Research International, 30(8), 19828–19844. https://doi.org/10.1007/s11356-022-23046-0

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Shams, M. S., Khalifa, M. R., El-Dali, M. A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387. https://doi.org/10.1016/j.ecoenv.2017.04.026

    Article  CAS  Google Scholar 

  • Sullivan, T.S. (2010). Trace metal bioavailability in two unique soil systems.

    Google Scholar 

  • Sun, X., Ma, T., Yu, J., Huang, W., Fang, Y., & Zhan, J. (2018). Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study. Food Chemistry, 241, 40–50. https://doi.org/10.1016/j.foodchem.2017.08.074

    Article  CAS  Google Scholar 

  • TCVN 5979:2021 (ISO 10390:2021). (2021). Soil, treated biowaste and sludge - Determination of pH. Ministry of Science and Technology, Hanoi, Vietnam (in Vietnamese).

  • TCVN 8567:2010. (2010). Soil quality - Method for determination of particle size distribution. Ministry of Science and Technology, Hanoi, Vietnam (in Vietnamese).

  • TCVN 8568:2010. (2010). Soil quality - Method for determination of cation exchange capacity (CEC) by ammonium acetate method. Ministry of Science and Technology, Hanoi, Vietnam (in Vietnamese).

  • TCVN 8941:2011. (2011). Soil quality - Determination of total organic carbon - Walkley Black method. Ministry of Science and Technology, Hanoi, Vietnam (in Vietnamese).

  • Udom, B. E., Omovbude, S., & Abam, P. O. (2018). Topsoil removal and cultivation effects on structural and hydraulic properties. CATENA, 165, 100–105. https://doi.org/10.1016/j.catena.2018.01.029

    Article  Google Scholar 

  • US EPA. (1996). “Method 3050B: Acid Digestion of Sediments, Sludges, and Soils,” Revision 2. .

    Google Scholar 

  • USDA. (2014). Soil Survey Field and Laboratory Methods Manual. United States Dep. Agric. Nat. Resour. Conserv. Serv. 487. 10.13140/RG.2.1.3803.8889

  • Vietnam Soil Science Society (ASSS). (2000). Vietnam soils (p. 411). Agricultural Publisher (in Vietnamese).

    Google Scholar 

  • Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409. https://doi.org/10.1071/fp08288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhung Thi Ha Pham.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, N.T.H. Distribution and Bioavailability of Copper in the Soil of a Young Steep Vineyard Applying Different Extraction Procedures and Pseudo-Total Digestion. Water Air Soil Pollut 235, 326 (2024). https://doi.org/10.1007/s11270-024-07166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07166-6

Keywords

Navigation