Skip to main content
Log in

Sunlight-Driven Photocatalytic Degradation of Methylene Violet (MV) by Employing Samarium-Doped Tungsten Disulfide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water is a vital ingredient for life, but its quality is constantly deteriorating due to textile effluent carrying harmful dyes. Photodegradation is a highly effective process for breaking down dye using solar spectrum. In the current work, hydrothermal approach was used to designed pure tungsten disulfide and doped tungsten disulfide with differnet concentration (5, 10, and 15%) for photocatalytic degradation of methylene voilet. Different instrumental analyses were conducted to measure the physichemical and optical properties of the fabricated pure and doped materials. The photocatalytic behavior of the WS2, 5% doped WS2, 10% doped WS2 and 15% doped WS2 was noted after 0, 15, 30, 45, 60, and 75 min under sunlight. The removal of methyl violet (MV) by using pristine WS2, 5% doped WS2, 10% doped WS2 was about 51, 70, and 80%, respectively. The maximum degradation of methylene violet was given by 15% doped WS2 about 90% after 75 min under sunlight. The 15% doping of the Sm reduced the band gap that can effectively absorb the greater extent of the solar spectrum and degrade the methyl violet dye. The fabricated optimized doped photocatalyst can also be employed in other application such as batteries, drug delivery, and water splitting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Data Availability

The datasets created and/or analyzed during the present study will be made accessible to the author upon a reasonable request.

References

  • Abdullah, M., John, P., Ahmad, Z., Ashiq, M. N., Manzoor, S., Ghori, M. I., Nisa, M. U., Abid, A. G., Butt, K. Y., & Ahmed, S. (2021). Visible-light-driven ZnO/ZnS/MnO 2 ternary nanocomposite catalyst: Synthesis, characterization and photocatalytic degradation of methylene blue. Applied Nanoscience, 11, 2361–2370.

    Article  CAS  Google Scholar 

  • Abdullah, M., Alharbi, F. F., Khosa, R. Y., Alburaih, H. A., Manzoor, S., Abid, A. G., Ali, H. E., Waheed, M. S., Ansari, M. N., & Farid, H. M. T. (2023a). Partial sulfur doping induced variation in morphology of MnFe2O4 with enhanced electrochemical performance for energy storage devices. Korean Journal of Chemical Engineering, 40(6), 1518–1528.

    Article  CAS  Google Scholar 

  • Abdullah, M., John, P., Ashiq, M. N., Manzoor, S., Ghori, M. I., Nisa, M. U., Abid, A. G., Butt, K. Y., & Ahmed, S. (2023b). Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnology for Environmental Engineering, 8(1), 63–73.

    Article  CAS  Google Scholar 

  • Alahmari, S. D., Alsalhi, S. A., Abdullah, M., Al-Sehemi, A. G., Henaish, A. M. A.,  Ahmad, Z., & Aman, S. (2024). Development of Mn doped CeTe as an environmental purifier for photodegradation of noxious methylene blue dye in water. Journal of Physics and Chemistry of Solids, 188(2024), 111909.

  • Alharbi, F. F., Aman, S., Abdullah, M., Abid, A. G., Manzoor, S., Khosa, R. Y., Farid, H. M. T., Silibin, M. V., Trukhanov, S. V., Zubar, T. I., & Trukhanov, A. V. (2024). Hydrothermal synthesis of Er2O3–NiO material for oxidation of water in alkaline media. Ceramics International, 50(6), 8997–9006.

  • Anwar, M., Kayani, Z. N., Hassan, A., Zeeshan, T., Riaz, S., & Naseem, S. (2023). Enhancement in photocatalytic activity and biological properties of Sm doped ZnO nanostructures by the increase in Sm contents. Inorganic Chemistry Communications, 158, 111431.

    Article  CAS  Google Scholar 

  • Ashraf, W., Fatima, T., Srivastava, K., & Khanuja, M. (2019). Superior photocatalytic activity of tungsten disulfide nanostructures: Role of morphology and defects. Applied Nanoscience, 9, 1515–1529.

    Article  CAS  Google Scholar 

  • Batra, V., Kaur, I., Pathania, D., & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314.

    Article  Google Scholar 

  • Bhange, P., Awate, S., Gholap, R., Gokavi, G., & Bhange, D. (2016). Photocatalytic degradation of methylene blue on Sn-doped titania nanoparticles synthesized by solution combustion route. Materials Research Bulletin, 76, 264–272.

    Article  CAS  Google Scholar 

  • Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., & Phanichphant, S. (2014). Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Scientific Reports, 4(1), 5757.

    Article  CAS  Google Scholar 

  • Chen, Z., Ma, T., Li, Z., Zhu, W., & Li, L. (2024). Enhanced photocatalytic performance of S-scheme CdMoO4/CdO nanosphere photocatalyst. Journal of Materials Science & Technology, 179, 198–207.

    Article  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085.

    Article  CAS  Google Scholar 

  • Dawood, S., & Sen, T. (2014). Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(104), 1–11.

    Google Scholar 

  • Dighe, P., Bhoite, A., Patil, V., Tarwal, N., & Sarawade, P. (2024). Development of ultrathin nanoflakes of Ni–Co LDH films by hydrothermal route for energy storage application. Journal of Physics and Chemistry of Solids, 185, 111772.

    Article  CAS  Google Scholar 

  • Eyasu, A., Yadav, O. P., & Bachheti, R. (2013). Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation. International Journal of ChemTech Research, 5(4), 1452–1461.

    CAS  Google Scholar 

  • Fang, B., Xing, Z., Sun, D., Li, Z., & Zhou, W. (2022). Hollow semiconductor photocatalysts for solar energy conversion. Advanced Powder Materials, 1(2), 100021.

    Article  Google Scholar 

  • Feng, X., Zeng, J., Zhu, J., Song, K., Zhou, X., Guo, X., Xie, C., & Shi, J.-W. (2024). Gd-modified Mn-Co oxides derived from layered double hydroxides for improved catalytic activity and H2O/SO2 tolerance in NH3-SCR of NOx reaction. Journal of Colloid and Interface Science, 659, 1063–1071.

    Article  CAS  Google Scholar 

  • Gao, S., Zhang, Q., Su, X., Wu, X., Zhang, X.-G., Guo, Y., Li, Z., Wei, J., Wang, H., & Zhang, S. (2023). Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction. Journal of the American Chemical Society, 145(17), 9520–9529.

    Article  CAS  Google Scholar 

  • Ghosh, B. K., & Ghosh, N. N. (2018). Applications of metal nanoparticles as catalysts in cleaning dyes containing industrial effluents: A review. Journal of Nanoscience and Nanotechnology, 18(6), 3735–3758.

    Article  CAS  Google Scholar 

  • Guo, S., Liu, J., Qiu, S., Wang, Y., Yan, X., Wu, N., Wang, S., & Guo, Z. (2016). Enhancing electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochimica Acta, 190, 556–565.

    Article  CAS  Google Scholar 

  • Hameeda, B., Mushtaq, A., Saeed, M., Munir, A., Jabeen, U., & Waseem, A. (2021). Development of Cu-doped NiO nanoscale material as efficient photocatalyst for visible light dye degradation. Toxin Reviews, 40(4), 1396–1406.

    Article  CAS  Google Scholar 

  • Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Kumar, B. S. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. Journal of Cleaner Production, 272, 122636.

    Article  CAS  Google Scholar 

  • Isari, A. A., Payan, A., Fattahi, M., Jorfi, S., & Kakavandi, B. (2018). Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549–564.

    Article  CAS  Google Scholar 

  • Ismail, M., Akhtar, K., Khan, M., Kamal, T., Khan, M. A., Asiri, M., Seo, J., & Khan, S. B. (2019). Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Current Pharmaceutical Design, 25(34), 3645–3663.

    Article  CAS  Google Scholar 

  • Kayan, A. (2019). Inorganic-organic hybrid materials and their adsorbent properties. Advanced Composites and Hybrid Materials, 2, 34–45.

    Article  CAS  Google Scholar 

  • Kayan, G. Ö., & Kayan, A. (2021). Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. Journal of Polymers and the Environment, 29(11), 3477–3496.

    Article  CAS  Google Scholar 

  • Kayan, G. Ö., & Kayan, A. (2022). Polyhedral oligomeric silsesquioxane and polyorganosilicon hybrid materials and their usage in the removal of methylene blue dye. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2781–2792.

    Article  CAS  Google Scholar 

  • Kong, L., Liu, Y., Dong, L., Zhang, L., Qiao, L., Wang, W., & You, H. (2020). Enhanced red luminescence in CaAl 12 O 19: Mn 4+ via doping Ga 3+ for plant growth lighting. Dalton Transactions, 49(6), 1947–1954.

    Article  CAS  Google Scholar 

  • Kumar, R., Umar, A., Kumar, G., Akhtar, M., Wang, Y., & Kim, S. (2015). Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International, 41(6), 7773–7782.

    Article  CAS  Google Scholar 

  • Long, C., Liu, S., Li, X., Zhu, J., Zhang, L., Qing, T., Zhang, P., & Feng, B. (2022). In-situ covalent bonding of carbon dots on two-dimensional tungsten disulfide interfaces for effective monitoring and remediation of chlortetracycline residue. Chemical Engineering Journal, 432, 134315.

    Article  CAS  Google Scholar 

  • Mutalik, C., Okoro, G., Krisnawati, D. I., Jazidie, A., Rahmawati, E. Q., Rahayu, D., Hsu, W.-T., & Kuo, T.-R. (2022). Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. Journal of Colloid and Interface Science, 607, 1825–1835.

    Article  CAS  Google Scholar 

  • Nabi, G., Raza, W., Kamran, M. A., Alharbi, T., Rafique, M., Tahir, M. B., Hussain, S., Khalid, N., Malik, N., & Ahmed, R. S. (2020). Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. Journal of Energy Storage, 29, 101452.

    Article  Google Scholar 

  • Nandhini, N., Rajeshkumar, S., & Mythili, S. (2019). The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatalysis and Agricultural Biotechnology, 19, 101138.

    Article  Google Scholar 

  • Nisa, M. U., Abid, A. G., Gouadria, S., Munawar, T., Alrowaili, Z., Abdullah, M., Al-Buriahi, M., Iqbal, F., Ehsan, M. F., & Ashiq, M. N. (2022). Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surfaces and Interfaces, 31, 102012.

    Article  CAS  Google Scholar 

  • Notley, S. M. (2013). High yield production of photoluminescent tungsten disulphide nanoparticles. Journal of Colloid and Interface Science, 396, 160–164.

    Article  CAS  Google Scholar 

  • Routoula, E., & Patwardhan, S. V. (2020). Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environmental Science & Technology, 54(2), 647–664.

    Article  CAS  Google Scholar 

  • Selvaraj, V., Karthika, T. S., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224, 129195.

    Article  CAS  Google Scholar 

  • Shah, A. A., Bhatti, M. A., Tahira, A., Chandio, A. D., Channa, I. A., Sahito, A. G., Chalangar, E., Willander, M., Nur, O., & Ibupoto, Z. H. (2020). Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceramics International, 46(8), 9997–10005.

    Article  CAS  Google Scholar 

  • Shelar, S. G., Mahajan, V. K., Patil, S. P., & Sonawane, G. H. (2020). Effect of doping parameters on photocatalytic degradation of methylene blue using Ag doped ZnO nanocatalyst. SN Applied Sciences, 2, 1–10.

    Article  Google Scholar 

  • Sudrajat, H., Babel, S., Sakai, H., & Takizawa, S. (2016). Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2. Journal of Environmental Management, 165, 224–234.

    Article  CAS  Google Scholar 

  • Suiyi, Z., Yanong, R., Yuxin, Z., Minglin, Z., Weilu, Y., Xinfeng, X., Yang, Y., Jiancong, L., Zhan, Q., & Jialin, L. (2024). A novel clinoatacamite route to effectively separate Cu for recycling Ca/Zn/Mn from hazardous smelting waterwork sludge. Journal of Environmental Chemical Engineering, 12(2), 112024.

    Article  Google Scholar 

  • Tai, Z., Sun, G., Wang, T., Fang, Z., Hou, X., Li, F., Qiu, Y., Ye, Q., Jia, L., & Wang, H. (2022). Defected tungsten disulfide decorated CdS nanorods with covalent heterointerfaces for boosted photocatalytic H2 generation. Journal of Colloid and Interface Science, 628, 252–260.

    Article  CAS  Google Scholar 

  • Thakare, Y., Kore, S., Sharma, I., & Shah, M. (2022). A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. Environmental Science and Pollution Research, 29(37), 55415–55436.

    Article  CAS  Google Scholar 

  • Tian, H., Ma, J., Li, K., & Li, J. (2008). Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Materials Chemistry and Physics, 112(1), 47–51.

    Article  CAS  Google Scholar 

  • Wang, C., Shi, P., Guo, C., Guo, R., & Qiu, J. (2024a). CuCo2O4/CF cathode with bifunctional and dual reaction centers exhibits high RhB degradation in electro-Fenton systems. Journal of Electroanalytical Chemistry, 956, 118072.

    Article  CAS  Google Scholar 

  • Wang, Z., Fernández-Blanco, C., Chen, J., Veiga, M. C., & Kennes, C. (2024b). Effect of electron acceptors on product selectivity and carbon flux in carbon chain elongation with Megasphaera hexanoica. Science of the Total Environment, 912, 169509.

    Article  CAS  Google Scholar 

  • Xue, Y., Yang, T., Liu, X., Cao, Z., Gu, J., & Wang, Y. (2023). Enabling efficient and economical degradation of PCDD/Fs in MSWIFA via catalysis and dechlorination effect of EMR in synergistic thermal treatment. Chemosphere, 342, 140164.

    Article  CAS  Google Scholar 

  • Yu, F., Li, C., Li, W., Yu, Z., Xu, Z., Liu, Y., Wang, B., Na, B., & Qiu, J. (2024). Π-Skeleton tailoring of olefin-linked covalent organic frameworks achieving low exciton binding energy for photo-enhanced uranium extraction from seawater. Advanced Functional Materials, 34(1), 2307230.

    Article  CAS  Google Scholar 

  • Zabinski, J., Donley, M., Prasad, S., & McDevitt, N. (1994). Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition. Journal of Materials Science, 29, 4834–4839.

    Article  CAS  Google Scholar 

  • Zhang, D. R., Liu, H. L., Han, S. Y., & Piao, W. X. (2013). Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B. Journal of Industrial and Engineering Chemistry, 19(6), 1838–1844.

    Article  CAS  Google Scholar 

  • Zhang, D., Cao, Y., Wu, J., & Zhang, X. (2020). Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Applied Surface Science, 503, 144063.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, J., Zhang, Y., Ma, J., Huang, L., Yu, S., Chen, L., Song, G., Qiu, M., & Wang, X. (2021). Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 291, 118076.

    Article  CAS  Google Scholar 

  • Zhang, Q., Gao, S., Guo, Y., Wang, H., Wei, J., Su, X., Zhang, H., Liu, Z., & Wang, J. (2023). Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nature Communications, 14(1), 1147.

    Article  CAS  Google Scholar 

  • Zheng, L., Zhang, W., & Xiao, X. (2016). Preparation of titanium dioxide/tungsten disulfide composite photocatalysts with enhanced photocatalytic activity under visible light. Korean Journal of Chemical Engineering, 33, 107–113.

    Article  CAS  Google Scholar 

  • Zheng, Y., Liu, Y., Guo, X., Chen, Z., Zhang, W., Wang, Y., Tang, X., Zhang, Y., & Zhao, Y. (2020). Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. Journal of Materials Science & Technology, 41, 117–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R132), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The Deanship of Scientific Research at King Khalid University is greatly appreciated for funding this work under grant number (R.G.P-2/143/44). A.M.A. Henaish thanks the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The contributions made by each author are of equal significance.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Compliance with Ethical Standards

The ethical rules of the journal are adhered to by this paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights.

1. The samarium doped tungsten disulphide was successfully fabricated via hydrothermal method.

2. The microscopic, nanostructure, and photocatalytic activity of the composite was exploited by techniques like XRD, Raman spectroscopy, and PL-spectroscopy.

3. The optimized 15% doped WS2 photocatalyst shows maximum degradation of methylene violet about 90% after 75 min irradiation to sunlight.

4. The composite is reusable at least five times after that its efficiency for the degradation of methylene violet decreases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, S., Alanazi, M.M., Abdelmohsen, S.A.M. et al. Sunlight-Driven Photocatalytic Degradation of Methylene Violet (MV) by Employing Samarium-Doped Tungsten Disulfide. Water Air Soil Pollut 235, 268 (2024). https://doi.org/10.1007/s11270-024-07078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07078-5

Keywords

Navigation