Skip to main content

Advertisement

Log in

Partial sulfur doping induced variation in morphology of MnFe2O4 with enhanced electrochemical performance for energy storage devices

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Manganese ferrite offers several advantages when employed as an electrocatalytic material for supercapacitors, including outstanding cycle stability and energy capacity. When compared to identical-metal sulfides, specific capacitance (Csp) of MnFe2O4 remains inadequate. So, using the hydrothermal synthesis technique, partial sulfur doping of MnFe2O4 was achieved to investigate the synergetic effect of oxides and sulfides. Various spectroscopic and microscopic studies demonstrate that adding sulfur atoms into MnFe2O4 increases the lattice parameters, which improves electrochemical performance. At a current density around 2 A g−1, then calculating MnFe2O4 with partial sulfur doping has a Csp of 1,201.60 F g−1, that is greater than 784.0 F g−1 of pure MnFe2O4. Maximum energy density (Ed) of 93.62 Wh kg−1 was produced with a power density (Pd) of 749 W kg−1. The current study depicts that partial sulfur doping can enhance the electrochemical behavior of MnFe2O4. As a result, the present work shows more effective in field of energy storage by enhancing their poor electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Research Data Policy and Data Availability Statements

The corresponding author will provide the datasets created during and/or analyzed during the current investigation upon reasonable request.

References

  1. S. Aman, M. B. Tahir, Z. Ahmad, S. Znaidia, N. Ahmad, R. Y. Khosa, M. S. Waheed, S. Manzoor, M. Abdullah and T. A. Taha, Chin. J. Phys., 79, 531 (2022).

    Article  CAS  Google Scholar 

  2. S. Manzoor, A. G. Abid, S. Aman, M. Abdullah, A. R. Rashid, H. M. Ali, T. E. Ali, M. A. Assiri, M. N. Ashiq and T. A. Taha, Ceram. Int., 48, 36975 (2022).

    Article  CAS  Google Scholar 

  3. S. Gouadria, M. Abudllah, Z. Ahmad, P. John, M. U. Nisa, S. Manzoor, S. Aman, M. N. Ashiq and M. I. Ghori, Ceram. Int., 49, 4281 (2022).

    Article  Google Scholar 

  4. X. Li, Y. Li, X. Zhao, F. Kang and L. Dong, Energy Storage Mater., 53, 505 (2022).

    Article  Google Scholar 

  5. T. Kosukoglu, M. Carpan, S. Riza Tokgoz and A. Peksoz, Mater. Sci. Eng. B., 286, 116032 (2022).

    Article  CAS  Google Scholar 

  6. B. T. Al-Abawi, N. Parveen and S. A. Ansari, Sci. Rep., 12, 1 (2022).

    Article  Google Scholar 

  7. W. K. Chee, H. N. Lim, I. Harrison, K. F. Chong, Z. Zainal, C. H. Ng and N. M. Huang, Electrochim. Acta, 157, 88 (2015).

    Article  CAS  Google Scholar 

  8. J. Liang, Y. Feng, L. Liu, S. Li, C. Jiang and W. Wu, J. Mater. Chem. A, 7, 15960 (2019).

    Article  CAS  Google Scholar 

  9. G. Qiu, Q. Qiu, L. Qing, J. Zhou, X. Xu and S. Zhao, J. Phys. Chem. C, 19, 8218 (2022).

    Article  Google Scholar 

  10. Y. Chen, H. Yang, Z. Han, Z. Bo, J. Yan, K. Cen and K. K. Ostrikov, Energy Fuels, 36, 2390 (2022).

    Article  CAS  Google Scholar 

  11. S. A. Beknalkar, A. M. Teli, T. S. Bhat, K. K. Pawar, S. S. Patil, N. S. Harale, J. C. Shin and P. S. Patil, J. Mater. Sci. Technol., 130, 227 (2022).

    Article  Google Scholar 

  12. T. Schoetz, L. W. Gordon, S. Ivanov, A. Bund, D. Mandler and R. J. Messinger, Electrochim. Acta, 412, 140072 (2022).

    Article  CAS  Google Scholar 

  13. M. M. Baig, I. H. Gul, S. M. Baig and F. Shahzad, J. Electroanal. Chem., 904, 115920 (2022).

    Article  CAS  Google Scholar 

  14. M. Y. Zhang, J. Y. Miao, X. H. Yan, Y. H. Zhu, Y. L. Li, W. J. Zhang, W. Zhu, J. M. Pan, M. S. Javed and S. Hussain, J. Mater. Chem., 10, 640 (2022).

    Article  CAS  Google Scholar 

  15. R. Yan, M. Antonietti and M. Oschatz, Adv. Energy Mater., 8, 1800026 (2018).

    Article  Google Scholar 

  16. M. Kim and J. Kim, Phys. Chem. Chem. Phys., 16, 11323 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. B. E. Conway and W. G. Pell, J. Solid State Electrochem., 7, 637 (2003).

    Article  CAS  Google Scholar 

  18. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Adv. Funct. Mater., 22, 2632 (2012).

    Article  CAS  Google Scholar 

  19. H. Ren, L. Zhang, J. Zhang, T. Miao, R. Yuan, W. Chen, Z. Wang, J. Yang and B. Zhao, Carbon N Y., 198, 46 (2022).

    Article  CAS  Google Scholar 

  20. M. Abdullah, P. John, Z. Ahmad, M. N. Ashiq, S. Manzoor, M. I. Ghori, M. U. Nisa, A. G. Abid, K. Y. Butt and S. Ahmed, Appl. Nanosci., 11, 2361 (2021).

    Article  CAS  Google Scholar 

  21. M. U. Nisa, S. Manzoor, A. G. Abid, N. Tamam, M. Abdullah, M. Najam-Ul-Haq, M. S. Al-Buriahi, Z. A. Alrowaili, Z. M. M. Mahmoud and M. N. Ashiq, Fuel, 321, 124086 (2022).

    Article  CAS  Google Scholar 

  22. X. Xu, W. Liu, Y. Kim and J. Cho, Nano Today, 9, 604 (2014).

    Article  CAS  Google Scholar 

  23. M. Akhilash, P. S. Salini, B. John and T. D. Mercy, J. Alloys Compd., 869, 159239 (2021).

    Article  CAS  Google Scholar 

  24. P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue and H. Pang, Adv. Energy Mater., 8, 1703259 (2018).

    Article  Google Scholar 

  25. B. wen Deng, Y. Yang, B. Yin and M. bo Yang, J. Colloid Interface Sci., 594, 770 (2021).

    Article  Google Scholar 

  26. D. Zheng, C. Sun, W. Pan, G. Guo, Y. Zheng, C. Liu and J. Zhu, Energy Fuels, 35, 16915 (2021).

    Article  CAS  Google Scholar 

  27. X. Li, X. Li, G. Wang, X. Wang and J. Ji, J. Mater. Chem. A, 1, 10103 (2013).

    Article  CAS  Google Scholar 

  28. D. P. Mali, R. T. Patil, A. S. Patil and V. J. Fulari, Chem. Phys. Lett., 770, 138431 (2021).

    Article  CAS  Google Scholar 

  29. D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang and F. Qu, Electrochim. Acta, 161, 427 (2015).

    Article  CAS  Google Scholar 

  30. K. H. Ye, Z. Q. Liu, C. W. Xu, N. Li, Y. B. Chen and Y. Z. Su, Inorg. Chem. Commun., 30, 1 (2013).

    Article  Google Scholar 

  31. Y. C. Chen, Y. K. Hsu, Y. G. Lin, Y. K. Lin, Y. Y. Horng, L. C. Chen and K. H. Chen, Electrochim. Acta, 56, 7124 (2011).

    Article  CAS  Google Scholar 

  32. C. Justin Raj, R. Manikandan, P. Sivakumar, D. O. Opar, A. Dennyson Savariraj, W. J. Cho, H. Jung and B. C. Kim, J. Alloys Compd., 892, 162199 (2022).

    Article  CAS  Google Scholar 

  33. X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun and J. Zhang, Electrochim. Acta, 296, 181 (2019).

    Article  CAS  Google Scholar 

  34. S. S. Raut and B. R. Sankapal, Electrochim. Acta, 198, 203 (2016).

    Article  CAS  Google Scholar 

  35. S. Maitra, R. Mitra and T. K. Nath, Curr. Appl. Phys., 27, 73 (2021).

    Article  Google Scholar 

  36. M. Fei, R. Zhang, L. Li, J. Li, Z. Ma, K. Zhang, Z. Li, Z. Yu, Q. Xiao and D. Yan, Electrochim. Acta, 368, 137586 (2021).

    Article  CAS  Google Scholar 

  37. D. P. Sherstyuk, A. Y. Starikov, V. E. Zhivulin, D. A. Zherebtsov, S. A. Gudkova, N. S. Perov, Y. A. Alekhina, K. A. Astapovich, D. A. Vinnik and A. V. Trukhanov, Ceram. Int., 47, 12163 (2021).

    Article  CAS  Google Scholar 

  38. M. Hassan, Y. Slimani, M. A. Gondal, M. J. S. Mohamed, S. Güner, M. A. Almessiere, A. M. Surrati, A. Baykal, S. Trukhanov and A. Trukhanov, Ceram. Int., 48, 24866 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University, located in Riyadh, Saudi Arabia, is supporting researchers under Project Number (PNURSP2023R55). The authors extend their appreciation to the Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia, for funding this work under grant number KKU/RCAMS/023/23.

Author information

Authors and Affiliations

Authors

Contributions

Everyone has contributed equally.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Compliance with Ethical Standards Yes, this paper complies with the journal’s ethical guidelines.

Conflict of Interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M., Alharbi, F.F., Khosa, R.Y. et al. Partial sulfur doping induced variation in morphology of MnFe2O4 with enhanced electrochemical performance for energy storage devices. Korean J. Chem. Eng. 40, 1518–1528 (2023). https://doi.org/10.1007/s11814-023-1423-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1423-1

Keywords

Navigation