Skip to main content
Log in

Physiological and Microbial Community Analysis During Municipal Organic Waste Leachate Treatment by a Sequential Nitrification-Denitrification Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The decomposition of municipal organic waste (MOW) results in the generation of gasses and liquid fractions called leachates that may contain high concentrations of organic matter and ammonium (NH4+). Leachates can be treated through biological processes to reduce the environmental problems they cause. Thus, in the present study, the physiology and microbial community of a sequential nitrification-denitrification process (SNDP) were analyzed during MOW leachate treatment. First, the acclimation of nitrifying (SBR with up to 600 mg NH4+-N/L) and denitrifying (UASB reactor with up to 166 mg NO3--N/L d) sludge was carried out. The SBR was then fed with leachate (28.92 ± 13.32–76.26 ± 13.94 mg NH4+-N/L and 5661.69 ± 1002.36–6070.28 ± 554.04 mg COD/L), and the effluent was fed to the UASB reactor. Both processes were completed during acclimation, and efficiencies and yields higher than 92% and 0.89 were obtained, respectively. During the leachate treatment, the SBR reached an ammonium consumption efficiency (ENH4+-N) of 99.01 ± 1.79% and a COD consumption efficiency (ECOD) of 81.62 ± 13.15%. However, the yields and specific production rates of nitrate decreased by 41.0% and 99.8%, respectively. The UASB reactor fed with the SBR effluent (17.68 ± 0.77 mg/L nitrate, 55.20 ± 0.84 mg/L nitrite, and 55.20 ± 0.84–324.86 ± 9.94 mg COD/L) reached nitrate, nitrite, and ECOD efficiencies of 81.53 ± 1.53%, 64.49 ± 1.03%, and 97.42 ± 2.03%, respectively. During acclimation in the nitrifying SBR, the groups that predominated in the microbial community were Nitrospira, Bacteroidetes, Nitrosomonas, and Thauera (25%, 21%, 4%, and 3%, respectively). However, in the presence of leachate, nitrite accumulation and low O2 availability decreased the values of Nitrospira and Nitrosomonas to 0.2% and 0.08%, respectively. In the UASB reactor, members of the family Pseudomonadaceae and the genera Cecembia and Thauera were predominant, regardless of the stage evaluated. The use of an SNDP allowed the removal of up to 99% of NH4+ and 98% of COD, and thus, it may be an alternative method for MOW leachate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., & Al-Rekabi, W. S. (2009). Review on landwll leachate treatments. Journal of Applied Sciences Research, 5(5), 534–545.

    CAS  Google Scholar 

  • Boonyaroj, V., Chiemchaisri, C., Chiemchaisri, W., & Yamamoto, K. (2017). Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge. Journal of Hazardous Materials, 323, 311–318. https://doi.org/10.1016/j.jhazmat.2016.06.064

    Article  CAS  Google Scholar 

  • Bove, D., Merello, S., Frumento, D., Arni, S. A., Aliakbarian, B., & Converti, A. (2015). A critical review of biological processes and technologies for landfill leachate treatment. Chemical Engineering & Technology, 38(12), 2115–2126. https://doi.org/10.1002/ceat.201500257

    Article  CAS  Google Scholar 

  • Brennan, R. B., Clifford, E., Devroedt, C., Morrison, L., & Healy, M. G. (2017). Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. Journal of Environmental Management, 188, 64–72. https://doi.org/10.1016/j.jenvman.2016.11.055

    Article  CAS  Google Scholar 

  • Bueno, R. de F., Faria, J. K., Uliana, D. P., & Liduino, V. S. (2021). Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. Environmental Technology, 42(24), 3756–3770.

    Article  CAS  Google Scholar 

  • Daims, H., & Wagner, M. (2018). Nitrospira. Trends in Microbiology, 26(5), 462–463.

    Article  CAS  Google Scholar 

  • Dávila, S. M. (2020). Degradación ambiental e inundaciones en La Lagunilla, Xalapa Veracruz. UVserva, 0(10), 179–196. https://doi.org/10.25009/uvserva.v0i10.2738

    Article  Google Scholar 

  • Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2007). Denitrification of high strength nitrate waste. Bioresource Technology, 98(2), 247–252. https://doi.org/10.1016/j.biortech.2006.01.019

    Article  CAS  Google Scholar 

  • Federation, W. E., & Association, A. (2005). Standard methods for the examination of water and wastewater (p. 21). American Public Health Association (APHA).

    Google Scholar 

  • Fernández-Gomez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S. G., González, J. M., & Pedros-Alio, C. (2013). Ecology of marine Bacteroidetes: A comparative genomics approach. The ISME journal, 7(5), 1026–1037.

    Article  Google Scholar 

  • Gajski, G., Oreščanin, V., & Garaj-Vrhovac, V. (2012). Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and Environmental Safety, 78, 253–259. https://doi.org/10.1016/j.ecoenv.2011.11.032

    Article  CAS  Google Scholar 

  • García-López, J., Rad, C., & Navarro, M. (2014). Strategies of management for the whole treatment of leachates generated in a landfill and in a composting plant. Journal of Environmental Science and Health, Part A, 49(13), 1520–1530.

    Article  Google Scholar 

  • Ghosh, P., Swati, & Thakur, I. S. (2014). Enhanced removal of COD and color from landfill leachate in a sequential bioreactor. Bioresource Technology, 170, 10–19. https://doi.org/10.1016/j.biortech.2014.07.079

    Article  CAS  Google Scholar 

  • Hashemi, H., Zad, T. J., Derakhshan, Z., & Ebrahimi, A. A. (2017). Determination of sequencing batch reactor (SBR) performance in treatment of composting plant leachate. Health Scope, 6, 3.

    Google Scholar 

  • Hira, D., Aiko, N., Yabuki, Y., & Fujii, T. (2018). Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge. Journal of Environmental Management, 209, 188–194.

    Article  CAS  Google Scholar 

  • Imron, M. F., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustainable Environment Research, 31(1), 1–13.

    Article  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Lawal, I. M., Abubakar, S., Hassan, I., Zubairu, I., Umaru, I., Abdurrasheed, A. S., Adam, A. A., Ghaleb, A. A. S., Almahbashi, N. M. Y., Al-dhawi, B. N. S., & Noor, A. (2021). Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. Journal of Environmental Management, 282, 111946. https://doi.org/10.1016/j.jenvman.2021.111946

    Article  CAS  Google Scholar 

  • Jayaswal, K., Sahu, V., & Gurjar, B. R. (2018). Water Pollution, Human Health and Remediation. Energy, Environment, and SustainabilityIn S. Bhattacharya, A. Gupta, A. Gupta, & A. Pandey (Eds.), Water Remediation. Singapore: Springer. https://doi.org/10.1007/978-981-10-7551-3_2

    Chapter  Google Scholar 

  • Kamali, M., Gameiro, T., Costa, M. E., Capela, I., & Aminabhavi, T. M. (2019). Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge–A kinetic study. Chemical Engineering Journal, 378, 122186.

    Article  CAS  Google Scholar 

  • Klimiuk, E., & Kulikowska, D. (2006). Organics removal from landfill leachate and activated sludge production in SBR reactors. Waste Management, 26(10), 1140–1147. https://doi.org/10.1016/j.wasman.2005.09.011

    Article  CAS  Google Scholar 

  • Kulikowska, D., & Klimiuk, E. (2004). Removal of organics and nitrogen from municipal landfill leachate in two-stage SBR reactors. Polish Journal of Environmental Studies, 13, 4.

    Google Scholar 

  • Kurniawan, T. A., Lo, W., Chan, G., & Sillanpää, M. E. T. (2010). Biological processes for treatment of landfill leachate. Journal of Environmental Monitoring, 12(11), 2032. https://doi.org/10.1039/c0em00076k

    Article  CAS  Google Scholar 

  • Li, B., Irvin, S., & Baker, K. (2007). The variation of nitrifying bacterial population sizes in a sequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater. Journal of Environmental Engineering and Science, 6(6), 651–663.

    Article  CAS  Google Scholar 

  • Li, S., Fei, X., Cao, L., & Chi, Y. (2019). Insights into the effects of carbon source on sequencing batch reactors: Performance, quorum sensing and microbial community. Science of The Total Environment, 691, 799–809.

    Article  CAS  Google Scholar 

  • Luo, H., Zeng, Y., Cheng, Y., He, D., & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of The Total Environment, 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  CAS  Google Scholar 

  • Martínez-Jardines, M., Martínez-Hernández, S., Texier, A.-C., & Cuervo-López, F. (2018). 2-Chlorophenol consumption by cometabolism in nitrifying SBR reactors. Chemosphere, 212, 41–49. https://doi.org/10.1016/j.chemosphere.2018.08.064

    Article  CAS  Google Scholar 

  • Martínez-Jardines, M., Pérez-Alfaro, E., González-Robles, R. O., Texier, A.-C., & Cuervo-López, F. (2019). Decrease of inhibitory effect of 2-chlorophenol on nitrification in sequencing batch reactors. Environmental Technology, 40(26), 3422–3433. https://doi.org/10.1080/09593330.2018.1476594

    Article  CAS  Google Scholar 

  • Miao, L., Yang, G., Tao, T., & Peng, Y. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments – A review. Journal of Environmental Management, 235, 178–185. https://doi.org/10.1016/j.jenvman.2019.01.057

    Article  CAS  Google Scholar 

  • Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., & Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: Assessment and remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472–590.

    Article  Google Scholar 

  • Nakagawa, T., & Takahashi, R. (2015). Nitrosomonas stercoris sp. Nov., a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure. Microbes and Environments, 30(3), 221–227. https://doi.org/10.1264/jsme2.ME15072

    Article  Google Scholar 

  • Niu, W., Guo, J., Lian, J., Song, Y., Lu, C., Li, H., Han, Y., & Yin, P. (2017). Rapid start-up of denitrifying granular sludge by dosing with semi-starvation fluctuation C/N ratio strategy. Bioresource Technology, 241, 945–950. https://doi.org/10.1016/j.biortech.2017.05.206

    Article  CAS  Google Scholar 

  • Novelo, R. M., Borges, E. C., Riancho, M. R. S., Franco, C. Q., Vallejos, G. G., & Mejía, B. J. (2004). Tratamiento fisicoquímico de los lixiviados de un relleno sanitario. Ingeniería, 8(2), 155–163.

    Google Scholar 

  • Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567–S2574.

    Article  CAS  Google Scholar 

  • Romero, C., Ramos, P., Costa, C., & Márquez, M. C. (2013). Raw and digested municipal waste compost leachate as potential fertilizer: Comparison with a commercial fertilizer. Journal of Cleaner Production, 59, 73–78.

    Article  CAS  Google Scholar 

  • Roy, D., Azaïs, A., Benkaraache, S., Drogui, P., & Tyagi, R. D. (2018). Composting leachate: Characterization, treatment, and future perspectives. Reviews in Environmental Science and Bio/Technology, 17(2), 323–349. https://doi.org/10.1007/s11157-018-9462-5

    Article  CAS  Google Scholar 

  • Sheng, B., Wang, D., Liu, X., Yang, G., Zeng, W., Yang, Y., & Meng, F. (2020). Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant—From conventional to partial nitrification-denitrification. Frontiers of Environmental Science & Engineering, 14(6), 1–12.

    Article  Google Scholar 

  • Song, J., Zhang, W., Gao, J., Hu, X., Zhang, C., He, Q., Yang, F., Wang, H., Wang, X., & Zhan, X. (2020). A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. Bioresource Technology, 296, 122344.

    Article  CAS  Google Scholar 

  • Sun, H., Peng, Y., Wang, S., & Ma, J. (2015). Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate. Journal of Environmental Sciences, 30, 157–163. https://doi.org/10.1016/j.jes.2014.09.029

    Article  CAS  Google Scholar 

  • Tao, Y., Zhou, Y., He, X., Hu, X., & Li, D. (2014). Pseudomonas chengduensis sp. Nov., isolated from landfill leachate. International Journal of Systematic and Evolutionary Microbiology, 64(1), 95–100.

    Article  CAS  Google Scholar 

  • Tyrrel, S. F., Seymour, I., & Harris, J. A. (2008). Bioremediation of leachate from a green waste composting facility using waste-derived filter media. Bioresource Technology, 99(16), 7657–7664.

    Article  CAS  Google Scholar 

  • Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028

    Article  CAS  Google Scholar 

  • Wen, P., Huang, Y., Qiu, Z., & Li, Q. (2021). Microbial response during treatment of different types of landfill leachate in a semi-aerobic aged refuse biofilter. Chemosphere, 262, 127822.

    Article  CAS  Google Scholar 

  • Wu, L., Jia, C., Huang, S., Yu, K., Luo, A., & Peng, Y. (2022). Nitrite oxidation in oxygen-deficient conditions during landfill leachate treatment. Environmental Research, 214, 114090.

    Article  CAS  Google Scholar 

  • Xu, Z.-Y., Zeng, G.-M., Yang, Z.-H., Xiao, Y., Cao, M., Sun, H.-S., Ji, L.-L., & Chen, Y. (2010). Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource Technology, 101(1), 79–86. https://doi.org/10.1016/j.biortech.2009.07.0

    Article  CAS  Google Scholar 

  • Zhang, F., Peng, Y., Wang, Z., & Jiang, H. (2019). High-efficient nitrogen removal from mature landfill leachate and waste activated sludge (WAS) reduction via partial nitrification and integrated fermentation-denitritation process (PNIFD). Water Research, 160, 394–404.

    Article  CAS  Google Scholar 

  • Zhong, Q., Li, D., Tao, Y., Wang, X., He, X., Zhang, J., Zhang, J., Guo, W., & Wang, L. (2009). Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification. Waste Management, 29(4), 1347–1353. https://doi.org/10.1016/j.wasman.2008.10.014

    Article  CAS  Google Scholar 

  • Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z., & Renhua, H. (2009). Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Science of The Total Environment, 407(10), 3385–3391. https://doi.org/10.1016/j.scitotenv.2009.01.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Mexican National Council of Humanities, Science and Technology (CONAHCYT) by means of the Grant No. CF 2023-I-345. Martínez-Jardines received a postdoctoral fellowship from the Mexican Council of Science and Technology (CONACYT, CVU: 485058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Martínez-Hernández.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Jardines, M.A., de María Cuervo-López, F. & Martínez-Hernández, S. Physiological and Microbial Community Analysis During Municipal Organic Waste Leachate Treatment by a Sequential Nitrification-Denitrification Process. Water Air Soil Pollut 235, 264 (2024). https://doi.org/10.1007/s11270-024-07071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07071-y

Keywords

Navigation