Skip to main content
Log in

Optimization of Methylene Blue Removal from Aqueous Media by Photocatalysis and Adsorption Processes Using Coconut Biomass-Based Composite Photocatalysts

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biomass-based composites (BCPs) containing TiO2 were successfully synthesized by one-step sol–gel method and applied to methylene blue (MB) removal from water. The calcination temperature and the appropriate TiO2/biomass ratio played an important role on adsorption and photocatalytic capacity of the composites. The effects of variables, such as composites concentration (50–200 mg L−1), initial pH (5–9), and irradiation intensity (10–40 W m−2), were investigated applying response surface methodology for process optimization. The BCP400-50:50 (meaning composite formed by 50%:50% Ti: coconut biomass) exhibited the best removal performance (94%), surpassing the commercial TiO2-P25 (53%). Differently from other studies that focused specifically on photocatalysis performance, the present study investigated the adsorption mechanisms for MB removal by BCP. The adsorption data were well described by the Langmuir isotherm (maximum capacity of 294.12 mg g−1) and pseudo-second-order kinetic models indicating chemisorption as the rate-limiting mechanism of the process. Coconut shell biomass showed great potential for the application in BCP composites. Since BCPs had high MB adsorption capacity, it provides an attractive complementary water treatment option due to the low cost and abundant availability of such agro-industrial waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Abarna, B., Preethi, T., & Rajarajeswari, G. R. (2019). Lemon peel guided sol-gel synthesis of visible light active nano zinc oxide. Journal of Environmental Chemical Engineering, 7, 102742. https://doi.org/10.1016/j.jece.2018.10.056

    Article  CAS  Google Scholar 

  • Abdellah, M. H., Nosier, S. A., El-Shazly, A. H., & Mubarak, A. A. (2018). Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alexandria Engineering Journal, 57, 3727–3735. https://doi.org/10.1016/j.aej.2018.07.018

    Article  Google Scholar 

  • Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials, 170, 520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  Google Scholar 

  • Anantha Prabhu, C., Silambarasan, D., Sarika, R., & Selvam, V. (2022). Synthesis and characterization of TiO2. Materials Today: Proceedings, 64, 1793–1797. https://doi.org/10.1016/j.matpr.2022.06.074

    Article  CAS  Google Scholar 

  • Araùjo, P. M. M., Filho, L. F. F., & Barbosa, J. J. (2015). Estudo das propriedades termofísicas da fibra de coco minimante processada visando aplicação como isolante térmico. Revista Interdisciplinar de Pesquisa e Inovação, 1, 134–142.

    Google Scholar 

  • Arutanti, O., Sari, A. L., Kartikowati, C. W., et al. (2022). Design and application of homogeneous-structured TiO2/activated carbon nanocomposite for adsorption–photocatalytic degradation of MO. Water, Air, & Soil Pollution, 233:. https://doi.org/10.1007/s11270-022-05600-1

  • BRASIL. (2011). Ministério do meio ambiente. conselho nacional do meio ambiente - CONAMA. Resolução, 430, 1–9.

    Google Scholar 

  • Cai, Y., Yang, F., Wu, L., et al (2021). Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Materials Chemistry and Physics, 258:. https://doi.org/10.1016/j.matchemphys.2020.123919

  • Chakhtouna, H., Zari, N., Bouhfid, R., et al. (2021a). Novel photocatalyst based on date palm fibers for efficient dyes removal. Journal of Water Process Engineering, 43, 1–13. https://doi.org/10.1016/j.jwpe.2021.102167

    Article  Google Scholar 

  • Chakhtouna, H., Zari, N., Bouhfid, R., et al. (2021b). Novel photocatalyst based on date palm fibers for efficient dyes removal. Journal of Water Process Engineering, 43, 102167. https://doi.org/10.1016/j.jwpe.2021.102167

    Article  Google Scholar 

  • Chen, Y., Yan, C., Dong, J., et al. (2021). Structure/property control in photocatalytic organic semiconductor nanocrystals. Advanced Functional Materials, 31, 1–37. https://doi.org/10.1002/adfm.202104099

    Article  CAS  Google Scholar 

  • Corrêa, M. D. P. (2015). Solar ultraviolet radiation: Properties, characteristics and amounts observed in Brazil and south America. Anais Brasileiros De Dermatologia, 90, 297–313. https://doi.org/10.1590/abd1806-4841.20154089

    Article  Google Scholar 

  • Cunha, D. L., Kuznetsov, A., Achete, C. A., et al. (2018). Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: Photoactivity, leaching and regeneration process. PeerJ, 2018, 1–19. https://doi.org/10.7717/peerj.4464

    Article  CAS  Google Scholar 

  • Cunha, D. L., Kuznetsov, A., Araujo, J. R., et al. (2019). Optimization of benzodiazepine drugs removal from water by heterogeneous photocatalysis using TiO2/activated carbon composite. Water, Air, and Soil Pollution, 230, 1–17. https://doi.org/10.1007/s11270-019-4202-1

    Article  CAS  Google Scholar 

  • Cunha, D. L., da Silva, A. S. A., Coutinho, R., & Marques, M. (2022). Optimization of ozonation process to remove psychoactive drugs from two municipal wastewater treatment plants. Water, Air, & Soil Pollution, 233:. https://doi.org/10.1007/s11270-022-05541-9

  • Djellabi, R., Yang, B., Wang, Y., et al. (2019). Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chemical Engineering Journal, 366, 172–180. https://doi.org/10.1016/j.cej.2019.02.035

    Article  CAS  Google Scholar 

  • Donar, Y. O., Bilge, S., Sınağ, A., & Pliekhov, O. (2018). TiO2/carbon materials derived from hydrothermal carbonization of waste biomass: a highly efficient, low-cost visible-light-driven photocatalyst. ChemCatChem, 10, 1134–1139. https://doi.org/10.1002/cctc.201701405

    Article  CAS  Google Scholar 

  • Ebrahimzadeh, S., Wols, B., Azzellino, A., et al. (2021). Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment. Journal of Water Process Engineering, 42, 102164. https://doi.org/10.1016/j.jwpe.2021.102164

  • El-Salamony, R. A., Amdeha, E., Ghoneim, S. A., et al. (2017). Titania modified activated carbon prepared from sugarcane bagasse: Adsorption and photocatalytic degradation of methylene blue under visible light irradiation. Environmental Technology (united Kingdom), 38, 3122–3136. https://doi.org/10.1080/21622515.2017.1290148

    Article  CAS  Google Scholar 

  • El-Sheikh, S. M., Khedr, T. M., Hakki, A., et al. (2017). Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 173, 258–268. https://doi.org/10.1016/j.seppur.2016.09.034

    Article  CAS  Google Scholar 

  • Esfandiar, N., Nasernejad, B., & Ebadi, T. (2014). Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM). Journal of Industrial and Engineering Chemistry, 20, 3726–3736. https://doi.org/10.1016/j.jiec.2013.12.072

    Article  CAS  Google Scholar 

  • Fazal, T., Razzaq, A., Javed, F., et al. (2020). Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. Journal of Hazardous Materials, 390, 121623. https://doi.org/10.1016/j.jhazmat.2019.121623

    Article  CAS  Google Scholar 

  • Fito, J., Kefeni, K. K., & Nkambule, T. T. I. (2022). The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Science of the Total Environment, 829, 154648. https://doi.org/10.1016/j.scitotenv.2022.154648

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Gao, D., Yuan, R., Fan, J., et al. (2020). Highly efficient S2−-adsorbed MoSx-modified TiO2 photocatalysts: a general grafting strategy and boosted interfacial charge transfer. Journal of Materials Science and Technology, 56, 122–132. https://doi.org/10.1016/j.jmst.2020.02.031

    Article  Google Scholar 

  • Gholami, P., Khataee, A., Soltani, R. D. C., et al. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. https://doi.org/10.1016/j.jhazmat.2019.121070

    Article  CAS  Google Scholar 

  • Haider, S., Uddin Khan, S., Najeeb, J., et al (2022) Synthesis of cadmium oxide nanostructures by using Dalbergia sissoo for response surface methodology based photocatalytic degradation of methylene blue. Journal of Cleaner Production, 365:. https://doi.org/10.1016/j.jclepro.2022.132822

  • Johari, K., Saman, N., Song, S. T., et al. (2013). Utilization of coconut milk processing waste as a low-cost mercury sorbent. Industrial & Engineering Chemistry Research, 52(44), 15648–15657. https://doi.org/10.1021/ie401470w

  • Kapoor, R. T., Danish, M., Singh, R. S., et al. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255. https://doi.org/10.1016/j.jwpe.2021.102255

    Article  Google Scholar 

  • Khraisheh, M., Kim, J., Campos, L., et al. (2013). Removal of carbamazepine from water by a novel TiO2-coconut shell powder/UV process: composite preparation and photocatalytic activity. Environmental Engineering Science, 30, 515–526. https://doi.org/10.1089/ees.2012.0056

    Article  CAS  Google Scholar 

  • Khraisheh, M., Kim, J., Campos, L., et al. (2014). Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2-coconut shell powder (TCNSP) composite. Journal of Industrial and Engineering Chemistry, 20, 979–987. https://doi.org/10.1016/j.jiec.2013.06.032

    Article  CAS  Google Scholar 

  • Kulal, P., & Badalamoole, V. (2020). Efficient removal of dyes and heavy metal ions from wastewater using Gum ghatti - graft - poly(4-acryloylmorpholine) hydrogel incorporated with magnetite nanoparticles. Journal of Environmental Chemical Engineering, 8:. https://doi.org/10.1016/j.jece.2020.104207

  • Kumar, K. V., Gadipelli, S., Wood, B., et al. (2019). Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A, 7, 10104–10137.

    Article  CAS  Google Scholar 

  • Kumar, M. R. A., Abebe, B., Nagaswarupa, H. P., et al (2020). Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors. Scientific Reports, 10:. https://doi.org/10.1038/s41598-020-58110-7

  • Kumar, R., Qureshi, M., Vishwakarma, D. K., et al (2022). A review on emerging water contaminants and the application of sustainable removal technologies. Case Studies in Chemical and Environmental Engineering, 6:. https://doi.org/10.1016/j.cscee.2022.100219

  • Lal, M., Sharma, P., & Ram, C. (2021). Calcination temperature effect on titanium oxide (TiO2) nanoparticles synthesis. Optik (Stuttg), 241:. https://doi.org/10.1016/j.ijleo.2021.166934

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I Solids. Journal of the American Chemical Society, 38, 2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  • Lazarotto, J. S., de Lima, B. V., Silvestri, S., & Foletto, E. L. (2020). Conversion of spent coffee grounds to biochar as promising TiO2 support for effective degradation of diclofenac in water. Applied Organometallic Chemistry, 34, 1–11. https://doi.org/10.1002/aoc.6001

    Article  CAS  Google Scholar 

  • Le, H. A., Linh, L. T., Chin, S., & Jurng, J. (2012). Photocatalytic degradation of methylene blue by a combination of TiO 2-anatase and coconut shell activated carbon. Powder Technology, 225, 167–175. https://doi.org/10.1016/j.powtec.2012.04.004

    Article  CAS  Google Scholar 

  • Le, P. T., Le, D. N., Nguyen, T. H., et al. (2021). On the degradation of glyphosate by photocatalysis using TiO2/biochar composite obtained from the pyrolysis of rice husk. Water (basel), 13, 1–19. https://doi.org/10.3390/w13233326

    Article  CAS  Google Scholar 

  • León, A., Reuquen, P., Garín, C., et al (2017). FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Applied Sciences (Switzerland), 7:. https://doi.org/10.3390/app7010049

  • Li, Y., Liao, W., & Suo, Z. (2011). Influence of KOH modification on TiO2 structure and Au/TiO2 catalyst activity in CO oxidation. Journal of Fuel Chemistry and Technology, 39, 47–53. https://doi.org/10.1016/S1872-5813(11)60009-1

  • Luo, L., Yang, Y., Xiao, M., et al. (2015). A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation. Chemical Engineering Journal, 262, 1275–1283. https://doi.org/10.1016/j.cej.2014.10.087

    Article  CAS  Google Scholar 

  • Luo, H., Yu, S., Zhong, M., et al. (2022b). Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances. Journal of Alloys and Compounds, 899, 163287. https://doi.org/10.1016/j.jallcom.2021.163287

    Article  CAS  Google Scholar 

  • Luo, H., Yu, S., Zhong, M., et al. (2022a). Waste biomass-assisted synthesis of TiO2 and N/O-contained graphene-like biochar composites for enhanced adsorptive and photocatalytic performances. Journal of Alloys and Compounds, 899:. https://doi.org/10.1016/j.jallcom.2021.163287

  • Luo, Y., Han, Y., Xue, M., et al. (2022c). Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Journal of Environmental Management, 308:. https://doi.org/10.1016/j.jenvman.2022.114652

  • Luo, Y., Zheng, A., Xue, M., et al. (2022d). Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products, 186:. https://doi.org/10.1016/j.indcrop.2022.115229

  • Luo, Y., Wang, Y., Hua, F., et al. (2023a). Adsorption and photodegradation of reactive red 120 with nickel-iron-layered double hydroxide/biochar composites. Journal of Hazardous Materials, 443:. https://doi.org/10.1016/j.jhazmat.2022.130300

  • Luo, Y., Zheng, A., Li, J., et al. (2023b). Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chemical Engineering Journal, 457:. https://doi.org/10.1016/j.cej.2022.141228

  • Makhado, E., Motshabi, B. R., Allouss, D., et al. (2022). Development of a ghatti gum/poly (acrylic acid)/TiO2 hydrogel nanocomposite for malachite green adsorption from aqueous media: Statistical optimization using response surface methodology. Chemosphere, 306:. https://doi.org/10.1016/j.chemosphere.2022.135524

  • Meddah, S., el Hadi, S. M., Bououdina, M., & Khezami, L. (2022). Outstanding performance of electro-Fenton/ultra-violet/ultra-sound assisted-persulfate process for the complete degradation of hazardous pollutants in contaminated water. Process Safety and Environmental Protection, 165, 739–753. https://doi.org/10.1016/j.psep.2022.08.002

    Article  CAS  Google Scholar 

  • Mian, M., Liu, G., Yousaf, B., et al. (2018). ScienceDirect One-step synthesis of N-doped metal / biochar composite using NH 3 -ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue. Journal of Environmental Sciences, 78, 29–41. https://doi.org/10.1016/j.jes.2018.06.014

    Article  CAS  Google Scholar 

  • Minh, T. D., Song, J., Deb, A., et al. (2020). Biochar based catalysts for the abatement of emerging pollutants : a review. Chemical Engineering Journal, 394, 124856. https://doi.org/10.1016/j.cej.2020.124856

    Article  CAS  Google Scholar 

  • Monte Blanco, S. P. D., Scheufele, F. B., Módenes, A. N., et al. (2017). Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal, 307, 466–475. https://doi.org/10.1016/j.cej.2016.08.104

    Article  CAS  Google Scholar 

  • Mu, Y., Yang, S., Li, Y., et al. (2021). Highly efficient adsorptive and photocatalytic degradation of dye pollutants over biomass-derived carbon-supported Ag composites under visible light. Journal of Environmental Chemical Engineering, 9:. https://doi.org/10.1016/j.jece.2021.106580

  • Nunes, L. A., Silva, M. L. S., Gerber, J. Z., & Kalid, R. D. A. (2020). Waste green coconut shells: Diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production, 255:. https://doi.org/10.1016/j.jclepro.2020.120169

  • Oliveira CC (2012) Substratos para uso em telhados verdes: Avaliação da retenção hídrica e qualidade da água de escoamento. (Master’s dissertation, Rio de Janeiro State University). Rio de Janeiro. http://www.bdtd.uerj.br/handle/1/10981. Accessed 16 Sept 2023 

  • Pang, Q. H., Liao, G. F., Hu, X. Y., et al. (2019). Porous bamboo charcoal/TiO2 nanocomposites: preparation and photocatalytic property. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 34, 219–224. https://doi.org/10.15541/jim20180379

    Article  Google Scholar 

  • Pang, Y. L., Chuo, H. S., Lim, S., & Chong, W. C. (2020). Photocatalytic degradation of malachite green using titanium dioxide immobilised on oil palm empty fruit bunch derived cellulose. Materials Today: Proceedings, 46, 2017–2023. https://doi.org/10.1016/j.matpr.2021.02.684

    Article  CAS  Google Scholar 

  • Pang, Y. L., Law, Z. X., Lim, S., et al. (2021a). Enhanced photocatalytic degradation of methyl orange by coconut shell–derived biochar composites under visible LED light irradiation. Environmental Science and Pollution Research, 28, 27457–27473. https://doi.org/10.1007/s11356-020-12251-4

    Article  CAS  Google Scholar 

  • Pang, Y. L., Tan, J. H., Lim, S., & Chong, W. C. (2021b). A state-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers (Basel), 13:. https://doi.org/10.3390/polym13173009

  • Pastre, M. M. G., Cunha, D. L., & Marques, M. (2023). Design of biomass-based composite photocatalysts for wastewater treatment: a review over the past decade and future prospects. Environmental Science and Pollution Research, 30, 9103–9126.

    Article  CAS  Google Scholar 

  • Peng, X., Wang, M., Hu, F., et al. (2019). Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. Journal of Alloys and Compounds, 770, 1055–1063. https://doi.org/10.1016/j.jallcom.2018.08.207

    Article  CAS  Google Scholar 

  • Perumal, S., Sambandam, C. G., Prabu, M. K., & Ananthakumar, S. (2014). Synthesis and characterization studies of nano TiO2 prepared via sol-gel method. International Journal of Research in Engineering and Technology, 3, 651–657.

  • Puziy, A. M., Poddubnaya, O. I., Martı́nez-Alonso, A., et al. (2002). Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon, 40(9), 1493–1505, https://doi.org/10.1016/S0008-6223(01)00317-7

  • Quarta, A., Novais, R. M., Bettini, S., et al. (2019). A sustainable multi-function biomorphic material for pollution remediation or UV absorption: Aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering, 7:. https://doi.org/10.1016/j.jece.2019.102936

  • Abdul Rahim, A. R., Mohsin, H. M., Chin, K. B. L., et al (2021) Promising low-cost adsorbent from desiccated coconut waste for removal of Congo red dye from aqueous solution. Water, Air, & Soil Pollution, 232:. https://doi.org/10.1007/s11270-021-05308-8

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024–1024.

    Article  CAS  Google Scholar 

  • Regalbuto, J. R., & Robles, J. (2004). The engineering of Pt/carbon catalyst preparation. University of Illionis.

    Google Scholar 

  • Remache, W., Ramos, D. R., Mammeri, L., et al (2022). An efficient green photo-Fenton system for the degradation of organic pollutants. Kinetics of propranolol removal from different water matrices. Journal of Water Process Engineering, 46:. https://doi.org/10.1016/j.jwpe.2021.102514

  • Ren, H., Pan, Y., Zhong, J., et al. (2023). An antibiotic-destructase-activated Fenton-like catalyst for synergistic removal of tetracycline residues from aquatic environment. Chemical Engineering Journal, 141576. https://doi.org/10.1016/j.cej.2023.141576

  • Rodrigues, M. I., & Iemma, A. F. (2015). Experimental design and process optimization (1a). Boca Raton, United States. CRC Press.

  • Rodwihok, C., Suwannakaew, M., Han, S. W., et al (2023). Effective removal of hazardous organic contaminant using integrated photocatalytic adsorbents: Ternary zinc oxide/zeolite-coal fly ash/reduced graphene oxide nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 131044. https://doi.org/10.1016/j.colsurfa.2023.131044

  • Rout, T., Pradhan, D., Singh, R. K., & Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4, 3696–3705. https://doi.org/10.1016/j.jece.2016.02.024

    Article  CAS  Google Scholar 

  • Senobari, S., & Nezamzadeh-Ejhieh, A. (2018). A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: designing the experiments. Journal of Molecular Liquids, 261, 208–217. https://doi.org/10.1016/j.molliq.2018.04.028

    Article  CAS  Google Scholar 

  • Shao H, Wei Y, Zhang F, Li F (2020) Effects of biochars produced from coconut shell and sewage sludge on reducing the uptake of cesium by plant from contaminated soil. Water Air Soil Pollut 231:. https://doi.org/10.1007/s11270-020-04922-2

  • Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/j.rsma.2021.101802

  • Silvestri, S., Gonçalves, M. G., Da Silva Veiga, P. A., et al. (2019). TiO 2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye. Journal of Environmental Chemical Engineering, 7, 102879. https://doi.org/10.1016/j.jece.2019.102879

    Article  CAS  Google Scholar 

  • Silvestri, S., Carissimi, E., Harishkumar, R., & Chellam, P. V. (2022). ZnAl2O4 supported on lychee-biochar applied to ibuprofen photodegradation. Materials Research Bulletin, 145, 111530. https://doi.org/10.1016/j.materresbull.2021.111530

    Article  CAS  Google Scholar 

  • Song, C., Chen, K., Chen, M., et al. (2022b). Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H3PO4-modified TiO2 nanoparticles anchored on biochar. Journal of Water Process Engineering, 45, 102467. https://doi.org/10.1016/j.jwpe.2021.102467

    Article  Google Scholar 

  • Song, C., Chen, K., Chen, M., et al. (2022a). Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H3PO4-modified TiO2 nanoparticles anchored on biochar. Journal of Water Process Engineering, 45:. https://doi.org/10.1016/j.jwpe.2021.102467

  • Srivatsav, P., Bhargav, B. S., Shanmugasundaram, V., et al. (2020). Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12(12), 3561. https://doi.org/10.3390/w12123561

  • Sutar, S., Otari, S., & Jadhav, J. (2022). Biochar based photocatalyst for degradation of organic aqueous waste: a review. Chemosphere, 287, 132200. https://doi.org/10.1016/j.chemosphere.2021.132200

    Article  CAS  Google Scholar 

  • Tavangar, T., Karimi, M., Rezakazemi, M., et al. (2020). Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chemical Engineering Journal, 385, 123787. https://doi.org/10.1016/j.cej.2019.123787

    Article  CAS  Google Scholar 

  • Thambidurai, M., Saranya, G., Yuvakkumar, R., & Dang, C. (2022). Experimental and theoretical studies of cesium-doped cadmium oxide nanostructured films. Materials Letters, 309:. https://doi.org/10.1016/j.matlet.2021.131346

  • Thommes, M., Kaneko, K., Neimark, A. V., et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  • Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., et al. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168, 722–730. https://doi.org/10.1016/j.cej.2011.01.067

    Article  CAS  Google Scholar 

  • Vidyasagar, D., Gupta, A., Balapure, A., et al. (2019). 2D/2D Wg-C3N4/g-C3N4 composite as “Adsorb and Shuttle” model photocatalyst for pollution mitigation. Journal of Photochemistry and Photobiology, a: Chemistry, 370, 117–126. https://doi.org/10.1016/j.jphotochem.2018.10.038

    Article  CAS  Google Scholar 

  • Wang, T., Le, T., Hu, J., et al. (2022). Ultrasonic-assisted ozone degradation of organic pollutants in industrial sulfuric acid. Ultrasonics Sonochemistry, 86:. https://doi.org/10.1016/j.ultsonch.2022.106043

  • Wang, X., Zhang, Y., Zhang, C., et al. (2023). Artificial intelligence-aided preparation of perovskite SrFexZr1-xO3-δ catalysts for ozonation degradation of organic pollutant concentrated water after membrane treatment. Chemosphere, 137825. https://doi.org/10.1016/j.chemosphere.2023.137825

  • Wang, Q., & Sarkar, J. (2018). Pyrolysis behaviors of waste coconut shell and husk biomasses. International Journal of Energy Production and Management, 3, 34–43. https://doi.org/10.2495/EQ-V3-N1-34-43

    Article  Google Scholar 

  • Yao, B., Luo, Z., Du, S., et al. (2021). Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresource Technology, 340:. https://doi.org/10.1016/j.biortech.2021.125698

  • You, H., Zhang, Y., Li, W., et al. (2019). Removal of NO3-N in alkaline rare earth industry effluent using modified coconut shell biochar. Water Science and Technology, 80, 784–793. https://doi.org/10.2166/wst.2019.321

    Article  CAS  Google Scholar 

  • Yu, F., Tian, F., Zou, H., et al. (2021). ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. Journal of Hazardous Materials, 415:. https://doi.org/10.1016/j.jhazmat.2021.125511

  • Zhai, S., Li, M., Wang, D., et al. (2019). In situ loading metal oxide particles on bio-chars: reusable materials for efficient removal of methylene blue from wastewater. Journal of Cleaner Production, 220, 460–474. https://doi.org/10.1016/j.jclepro.2019.02.152

    Article  CAS  Google Scholar 

  • Zhang, S., & Lu, X. (2018). Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere, 206, 777–783. https://doi.org/10.1016/j.chemosphere.2018.05.073

    Article  CAS  Google Scholar 

  • Zhang, H., Lv, X., Li, Y., et al. (2010). P25-Graphene composite as a high performance photocatalyst. ACS Nano, 4, 380–386. https://doi.org/10.1021/nn901221k

  • Zhang, W., Huang, Y., Liu, P., et al. (2014). TiO2 supported on bamboo charcoal for H2O 2-assisted pollutant degradation under solar light. Materials Science in Semiconductor Processing, 17, 124–128. https://doi.org/10.1016/j.mssp.2013.08.014

    Article  CAS  Google Scholar 

  • Zhang, Y., Hawboldt, K., Zhang, L., et al. (2022). Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 630

  • Zhao, Y., Wang, Y., Xiao, G., & Su, H. (2019). Fabrication of biomaterial / TiO 2 composite photocatalysts for the selective removal of trace environmental pollutants. Chinese Journal of Chemical Engineering, 27, 1416–1428. https://doi.org/10.1016/j.cjche.2019.02.003

    Article  CAS  Google Scholar 

  • Zheng, Y., Wan, Y., Chen, J., et al. (2020a). MgO modified biochar produced through ball milling: a dual-functional adsorbent for removal of different contaminants. Chemosphere, 243:. https://doi.org/10.1016/j.chemosphere.2019.125344

  • Zheng, Y., Wan, Y., Chen, J., et al. (2020b). MgO modified biochar produced through ball milling: a dual-functional adsorbent for removal of different contaminants. Chemosphere, 243:. https://doi.org/10.1016/j.chemosphere.2019.125344

  • Zubair, M., Arshad, M., & Ullah, A., (2020). Chapter 25-Chitosan-based materials for water and wastewater treatment. In: S. Gopi, S. Thomas, A. Pius (Eds.), Handbook of Chitin and Chitosan, Elsevier, 773–809. https://doi.org/10.1016/B978-0-12-817966-6.00025-X

  • Zulfiqar, M., Chowdhury, S., Omar, A. A., et al. (2020). Response surface methodology and artificial neural network for remediation of acid orange 7 using TiO2-P25: optimization and modeling approach. Environmental Science and Pollution Research, 27, 34018–34036. https://doi.org/10.1007/s11356-020-09674-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Department of Chemical Processes-IQ – Laboratory of Instrumental Characterization I – UERJ with the BET and FTIR analyses.

Funding

This research was supported by the Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro-FAPERJ (E-26/201.099/2022; E-26/210.072/2020; E-26/200.663/2019); the Brazilian National Council for Scientific and Technological Development-CNPq (Proc. 310.955/2022–0); and the Brazilian Innovation Agency-FINEP (Conv. 01.22.0198.00 Ref. 0098/21).

Author information

Authors and Affiliations

Authors

Contributions

Marina Pastre: conceptualization, investigation, figure formulation, formal analysis, writing—original draft. Deivisson Cunha: conceptualization, investigation, writing—review and editing. Marcia Marques: conceptualization, supervision, writing—review and editing. Alexei Kuznetsov and Braulio S. Archanjo carried out the X-ray diffraction and the SEM analyses. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marina Meloni Gória Pastre.

Ethics declarations

Ethics Approval

All authors ensure that principles of ethical and professional conduct have been followed, information regarding sources of funding, potential conflicts of interest (financial or non-financial) are disclosed. And no human or animal participation is involved in this work.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 549 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastre, M.M.G., Cunha, D.L., Kuznetsov, A. et al. Optimization of Methylene Blue Removal from Aqueous Media by Photocatalysis and Adsorption Processes Using Coconut Biomass-Based Composite Photocatalysts. Water Air Soil Pollut 235, 207 (2024). https://doi.org/10.1007/s11270-024-06976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06976-y

Keywords

Navigation