Skip to main content
Log in

Unleashing the Feasibility of Nanotechnology in Phytoremediation of Heavy Metal–Contaminated Soil: A Critical Review Towards Sustainable Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The escalating threat posed by metal contamination to both biota and the environment has become a significant global concern. These pollutants have the potential to enter the food chain and pose adverse health effects on human beings. Traditional methods of pollutant removal are often costly and time-consuming, necessitating the need for an eco-friendly and cost-effective approach such as phytoremediation. However, despite its widespread use, phytoremediation possesses inherent limitations, primarily its slow rate of remediation, often spanning several decades. To overcome these limitations, the use of nanoparticles in conjunction with phytoremediation has emerged as a rapid and environmentally friendly alternative that mitigates secondary environmental impacts such as greenhouse gas emissions, waste generation, and depletion of natural resources. Certain nanoparticles have been found to enhance the production of biomass in hyperaccumulator plants and assist in the scavenging of pollutants by augmenting antioxidant activities. This review provides insights into the mechanisms employed by plants during phytoremediation of contaminated soil, specifically focusing on the removal of heavy metals as well as highlighting the potential benefits derived from nanoparticle-assisted phytoremediation. Furthermore, future prospects for harnessing the full potential of nanoparticle-mediated phytoremediation are explored. While nano-phytoremediation holds promise as an effective soil cleanup strategy, further research and long-term studies are necessary to ensure its potential acceptability and effectiveness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data is included in the manuscript.

References

  • Abril, M., Ruiz, H., & Cumbal, L. H. (2018). Biosynthesis of multicomponent nanoparticles with extract of mortiño (Vaccinium floribundum Kunth) berry: Application on heavy metals removal from water and immobilization in soils. Journal of Nanotechnology, 2018. https://doi.org/10.1155/2018/9504807

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Alabdallah, N. M., & Hasan, M. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28(10), 5631–5639.

    CAS  Google Scholar 

  • Alam, M. G., Snow, E. T., & Tanaka, A. (2021). Arsenic and lead contamination in Asia: Specific focus on causes and effects. International Journal of Environmental Research and Public Health, 18(14), 7637.

    Google Scholar 

  • Arora, A., Mishra, S., Singh, V. P., Tripathi, D. K., Sharma, S., Dubey, N. K., & Chauhan, D. K. (2022a). Nanoparticle-mediated regulation of plant growth and development: A perspective for improving agriculture. Journal of Plant Growth and Regulation, 41(2), 527–545.

    Google Scholar 

  • Arora, D., Arora, A., Singh, A., Agarwal, R., & Kumar, S. (2022b). Usability of Brachiaria mutica (para grass) and Cyperus rotundus (nut grass) as bioadsorbents for the removal of methylene blue from aqueous solution: Isotherms, kinetics, and thermodynamics studies. Sustainable Water Resources Management, 8(5), 139.

    Google Scholar 

  • Arora, D., Arora, A., Bala, R., Panghal, V., & Kumar, S. (2023). Enhancement in phytoremediation efficiency of tagetus erecta with the application of nano-scale zero valent iron (nZVI) for the restoration of lead contaminated soil: An approach toward sustainability. Water, Air, & Soil Pollution, 234(8), 535.

    CAS  Google Scholar 

  • Asadi-Kavan, Z., Khavari-Nejad, R. A., Iranbakhsh, A., & Najafi, F. (2020). Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). Journal of Plant Interactions, 15(1), 166–179.

    CAS  Google Scholar 

  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: An overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56–66.

    Google Scholar 

  • Ashfaque, F., Inam, A., Sahay, S., & Iqbal, S. (2016). Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation-a promising technology. Journal of Agriculture and Ecology Research International, 6(2), 1–19.

    Google Scholar 

  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727.

    CAS  Google Scholar 

  • Babajani, A., Iranbakhsh, A., Oraghi Ardebili, Z., & Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, 26(24), 24430–24444.

    CAS  Google Scholar 

  • Bakshi, M., & Kumar, A. (2023). Co-application of TiO2 nanoparticles and hyperaccumulator Brassica juncea L. for effective Cd removal from soil: Assessing the feasibility of using nano-phytoremediation. Journal of Environmental Management, 341, 118005.

    CAS  Google Scholar 

  • Baragaño, D., Forján, R., Welte, L., & Gallego, J. L. R. (2020). Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Scientific Reports, 10(1), 1896. https://doi.org/10.1038/s41598-020-58852-4

    Article  CAS  Google Scholar 

  • Bitew, Y., & Alemayehu, M. (2017). Impact of crop production inputs on soil health: A review. Asian Journal Plant Science, 16(3), 109–131.

    CAS  Google Scholar 

  • Cao, F., Dai, H., Hao, P. F., & Wu, F. (2020). Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.). Chemosphere, 240, 124907. https://doi.org/10.1016/j.chemosphere.2019.124907

    Article  CAS  Google Scholar 

  • Chaoua, S., Boussaa, S., El Gharmali, A., & Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18(4), 429–436. https://doi.org/10.1016/j.jssas.2018.02.003

    Article  Google Scholar 

  • Chen, C. (2017). Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2(2), 1–40. https://doi.org/10.1515/jdis-2017-0006

    Article  CAS  Google Scholar 

  • Chen, J., Zhang, H., Huang, L., & Zhang, Y. (2022). A review on nanomaterials-assisted phytoremediation: Strategies, mechanisms, and field application. Science of Total Environment, 801, 149798.

    Google Scholar 

  • Cheng, J., Han, J., Wang, H., & Tong, W. (2015). Background of land development and opportunity of land use transition. Asian Agricultural Research, 7(1812–2016–144372), 45–48.

  • Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury—Current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731–1737.

    CAS  Google Scholar 

  • Cui, X., Bai, Y., & Zhang, Z. (2021). Mechanisms of nanomaterials enhanced phytoremediation of organic contaminants in soil. Environmental Research, 194, 110743.

    Google Scholar 

  • DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412.

    CAS  Google Scholar 

  • Daryabeigi Zand, A., Tabrizi, A. M., & Heir, A. V. (2020). The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Environmental Science and Pollution Research, 27, 42815–42829.

    CAS  Google Scholar 

  • Deb, V. K., Rabbani, A., Upadhyay, S., Bharti, P., Sharma, H., Rawat, D. S., & Saxena, G. (2020). Microbe-assisted phytoremediation in reinstating heavy metal-contaminated sites: Concepts, mechanisms, challenges, and future perspectives. Microbial Technology for Health and Environment, pp. 161–189.

  • Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environmental Science and Pollution Research, 27, 1319–1333.

    Google Scholar 

  • Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 688, 926–934. https://doi.org/10.1016/j.scitotenv.2019.06.392

    Article  CAS  Google Scholar 

  • Ditta, A., Khalid, N., Bibi, S., Wang, L., Sun, Y., & Sarwar, M. (2021). Applications of nanotechnology in plant nutrition: Current perspectives and future prospects. Journal of Nanobiotechnology, 19(1), 213.

    Google Scholar 

  • Dutta, S., Datta, A., Zaid, A., & Bhat, J. A. (2020). Metalloids and their impact on the environment. In R. Deshmukh, D. K. Tripathi, & G. Guerriero (Eds.), Metalloids in plants: Advances and future prospects (pp. 19–26). Wiley.

    Google Scholar 

  • El-Temsah, Y. S., Fan, Y., & Hamid, H. S. (2020). Nanoparticles in phytoremediation: Recent advances and challenges. Science of Total Environment, 724, 138281.

    Google Scholar 

  • Etesami, H., Adban, A., Farhoudi, R., & Khoshgoftarmanesh, A. H. (2022). Effects of engineered nanoparticles on plant growth and nutrient uptake: A review. Environmental Science and Pollution Research, 29(2), 1125–1145.

    Google Scholar 

  • Frattini, A., Pellegri, N., Nicastro, D., & De Sanctis, O. (2005). Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Materials Chemistry and Physics, 94(1), 148–152.

    CAS  Google Scholar 

  • Gao, Y., Liu, Y., Chen, Z., Tang, Z., & Lai, Y. (2021). Pollution characteristics and source analysis of heavy metals in the sediments of a typical river in Southwest China. International Journal of Environmental Research and Public Health, 18(9), 4800.

    Google Scholar 

  • Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74, 21–31.

    CAS  Google Scholar 

  • Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170–185.

    CAS  Google Scholar 

  • Gil-Díaz, M., Pinilla, P., Alonso, J., & Lobo, M. C. (2017). Viability of a nanoremediation process in single or multi-metal (loid) contaminated soils. Journal of Hazardous Materials, 321, 812–819. https://doi.org/10.1016/j.jhazmat.2016.09.071

    Article  CAS  Google Scholar 

  • Glomstad, B., Altin, D., Sørensen, L., Liu, J., Jenssen, B. M., & Booth, A. M. (2016). Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environmental Science & Technology, 50(5), 2660–2668.

    CAS  Google Scholar 

  • Gomes, H. I. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews, 1(1), 59–66. https://doi.org/10.1080/09593330.2012.696715

    Article  CAS  Google Scholar 

  • Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wan, J., & Xue, W. (2017). Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environmental Science & Technology, 51(19), 11308–11316.

    CAS  Google Scholar 

  • Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., & Wan, J. (2018). Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology, 38(3), 455–468.

    CAS  Google Scholar 

  • Guglielmetti, M., Sancini, G., & Bussolati, O. (2019). Chromium (VI) and cancer: Mechanisms of local and systemic effects. Current Medicinal Chemistry, 26(35), 6409–6424.

    Google Scholar 

  • Gulzar, A. B. M., & Mazumder, P. B. (2022). Helping plants to deal with heavy metal stress: The role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environmental Science and Pollution Research, 29(27), 40319–40341.

    CAS  Google Scholar 

  • Hafez, E. M., Osman, H. S., Gowayed, S. M., Okasha, S. A., Omara, A. E. D., Sami, R., & Abd El-Razek, U. A. (2021). Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy, 11(4), 676. https://doi.org/10.3390/agronomy11040676

    Article  CAS  Google Scholar 

  • Hajiboland, R., Norouzi, M., & Poschenrieder, C. (2021). Nanoparticles and plant pathogens: From disease control to enhancement of plant immunity. Frontiers in Microbiology, 12, 690280.

    Google Scholar 

  • Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., & Hu, Z. (2018). Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicology and Environmental Safety, 153, 229–237.

    CAS  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123(2), 305–332.

    CAS  Google Scholar 

  • Hussain, A., Ali, S., Rizwan, M., ur Rehman, M. Z., Javed, M. R., Imran, M., & Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242, 1518–1526.

    CAS  Google Scholar 

  • Hussain, F., Hadi, F., & Rongliang, Q. (2021). Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environmental Science and Pollution Research, 28, 34697–34713.

    CAS  Google Scholar 

  • Ji, X., Zhang, H., Li, Y., & Yang, X. (2021). Ecotoxicity of nanoparticles on terrestrial plants: A review. Environmental Pollution, 283, 117002.

    Google Scholar 

  • Jiang, B., Adebayo, A., Jia, J., Xing, Y., Deng, S., Guo, L., & Zhang, D. (2019a). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195.

    CAS  Google Scholar 

  • Jiang, M., Liu, S., Li, Y., Li, X., Luo, Z., Song, H., & Chen, Q. (2019b). EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety, 170, 502–512.

    CAS  Google Scholar 

  • Jin, Y., Liu, W., Li, X. L., Shen, S. G., Liang, S. X., Liu, C., & Shan, L. (2016). Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecological Engineering, 95, 25–29. https://doi.org/10.1016/j.ecoleng.2016.06.071

    Article  Google Scholar 

  • Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), 65–87.

    CAS  Google Scholar 

  • Kalaivanan, D., & Ganeshamurthy, A. N. (2016). Mechanisms of heavy metal toxicity in plants. In N. K. S. Rao., K. S. Shivashankara., & R. H. Laxman (Eds.), Abiotic Stress Physiology of Horticultural Crops (4th ed., pp. 85–102). Springer, New Delhi.

  • Kanth, P. C., Verma, S. K., & Gour, N. (2020). Functionalized nanomaterials for biomedical and agriculture industries. In C. M. Hussain (Ed) Handbook of functionalized nanomaterials for industrial applications (pp. 231–265). Elsevier. https://doi.org/10.1016/B978-0-12-816787-8.00010-7.

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Khan, M. I. R., Asgher, M., Khan, N. A., & Fatma, M. (2021). Nanoparticles-mediated regulation of reactive oxygen species for improved plant stress tolerance. Advances in Botanical Research, 97, 203–228.

    Google Scholar 

  • Kumar, A., Deka, B., & Mahto, T. K. (2021a). Nanomaterials for environmental remediation: A review. Journal of Environmental Chemical Engineering, 9(2), 105314.

    Google Scholar 

  • Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., & Hassan, A. A. (2021b). Nanotechnology for phytoremediation: Recent advances and future perspectives. Environmental Science and Pollution Research, 28(33), 44648–44670.

    Google Scholar 

  • Li, Q., Chen, X., Zhuang, J., & Chen, X. (2016). Decontaminating soil organic pollutants with manufactured nanoparticles. Environmental Science and Pollution Research, 23, 11533–11548.

    CAS  Google Scholar 

  • Liu, J., Liu, Y. J., Liu, Y., Liu, Z., & Zhang, A. N. (2018a). Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicology and Environmental Safety, 164, 261–269.

    CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018b). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    Article  CAS  Google Scholar 

  • Liu, C., Yang, L., Du, W., Yi, Y., Yu, J., Li, M., & Liu, X. (2021). Nanoparticles-assisted phytoremediation of heavy metal-contaminated soils: A critical review. Journal of Hazardous Materials, 416, 125785.

    Google Scholar 

  • Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 8263.

    Google Scholar 

  • Majumdar, A., Upadhyay, M. K., Ojha, M., Afsal, F., Giri, B., Srivastava, S., & Bose, S. (2022). Enhanced phytoremediation of Metal (loid) s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. Chemosphere, 288, 132588.

    CAS  Google Scholar 

  • Makarova, O. V., Rajh, T., Thurnauer, M. C., Martin, A., Kemme, P. A., & Cropek, D. (2000). Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environmental Science & Technology, 34(22), 4797–4803.

    CAS  Google Scholar 

  • Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3(1), 17–22.

    Google Scholar 

  • Mandal, A., Purakayastha, T. J., Ramana, S., Neenu, S., Bhaduri, D., Chakraborty, K., & Rao, A. S. (2014). Status on phytoremediation of heavy metals in India-A review. International Journal of Bio-resource and Stress Management, 5(Dec, 4), 553–560. https://doi.org/10.5958/0976-4038.2014.00609.5

    Article  Google Scholar 

  • Manickavasagam, M., Pavan, G., & Vasudevan, V. (2019). A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of indica cv. IR64. Scientific Reports, 9(1), 8821.

    Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    CAS  Google Scholar 

  • Matos, M. P., Correia, A. A. S., & Rasteiro, M. G. (2017). Application of carbon nanotubes to immobilize heavy metals in contaminated soils. Journal of Nanoparticle Research, 19, 1–11. https://doi.org/10.1007/s11051-017-3830-x

    Article  CAS  Google Scholar 

  • Megharaj, M., & Naidu, R. (2017). Soil and brownfield bioremediation. Microbial Biotechnology, 10, 1244–1249. https://doi.org/10.1111/1751-7915.12840

    Article  CAS  Google Scholar 

  • Mengmeng, S., Jie, X., Lingling, Z., Dejian, S., & Xitong, Z. (2019). Research progress on effects of silicon on plant growth under cadmium stress. Guangzhou Chemical Industry, 47, 41–43.

    Google Scholar 

  • Michálková, Z., Martínez-Fernández, D., & Komárek, M. (2017). Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil. Chemosphere, 186, 374–380. https://doi.org/10.1016/j.chemosphere.2017.08.009

    Article  CAS  Google Scholar 

  • Mittler, R., Rosso, M. G., Shulaev, V., & Veljovic-Jovanovic, S. (2019). Boosting plant stress tolerance by manipulating redox regulatory systems. The Plant Cell, 31(4), 814–835.

    Google Scholar 

  • Mohasseli, V., Farbood, F., & Moradi, A. (2020). Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Industrial Crops and Products, 149, 112338.

    CAS  Google Scholar 

  • Mokarram-Kashtiban, S., Hosseini, S. M., Tabari Kouchaksaraei, M., & Younesi, H. (2019). The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environmental Science and Pollution Research, 26, 10776–10789. https://doi.org/10.1007/s11356-019-04411-y

    Article  CAS  Google Scholar 

  • Morcillo, P., Esteban, M. Á., & Cuesta, A. (2016). Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere, 144, 225–233.

    CAS  Google Scholar 

  • Mortensen, L. H., Rønn, R., & Vestergård, M. (2018). Bioaccumulation of cadmium in soil organisms–With focus on wood ash application. Ecotoxicology and Environmental Safety, 156, 452–462.

    CAS  Google Scholar 

  • Mueller, N. C., & Nowack, B. (2010). Nanoparticles for remediation: Solving big problems with little particles. Elements, 6(6), 395–400. https://doi.org/10.2113/gselements.6.6.395

    Article  CAS  Google Scholar 

  • Mustafa, H., Ilyas, N., Akhtar, N., Raja, N. I., Zainab, T., Shah, T., & Ahmad, P. (2021). Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicology and Environmental Safety, 223, 112519.

    CAS  Google Scholar 

  • Naderizadeh, Z., Khademi, H., & Ayoubi, S. (2016). Biomonitoring of atmospheric heavy metals pollution using dust deposited on date palm leaves in southwestern Iran. Atmósfera, 29(2), 141–155.

    CAS  Google Scholar 

  • Nautiyal, P., Subramanian, S., Gogoi, N., & Bhattacharya, S. (2022). Phytoremediation using nanoparticles: Current status and future prospects. Journal of Environmental Management, 306, 114868.

    Google Scholar 

  • Nejad, Z. D., Jung, M. C., & Kim, K. H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927–953. https://doi.org/10.1007/s10653-017-9964-z

    Article  CAS  Google Scholar 

  • Ojuederie, O. B., Amoo, A. E., Owonubi, S. J., & Ayangbenro, A. S. (2022). Nanoparticles-assisted phytoremediation: Advances and applications. Assisted Phytoremediation, 155–178. https://doi.org/10.1016/B978-0-12-822893-7.00011-2

  • Oza, G., Reyes-Calderón, A., Mewada, A., Arriaga, L. G., Cabrera, G. B., Luna, D. E., & Sharma, A. (2020). Plant-based metal and metal alloy nanoparticle synthesis: A comprehensive mechanistic approach. Journal of Materials Science, 55, 1309–1330.

    CAS  Google Scholar 

  • Pachapur, V. L., Suresh, S., Raliya, R., & Biswas, P. (2020). Engineered nanoparticles for pathogen control in agriculture: Current status and future perspectives. Nanotechnology in Agriculture and Food Science, 1, 23–51.

    Google Scholar 

  • Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58–73. https://doi.org/10.1016/j.rser.2015.09.078

    Article  Google Scholar 

  • Pandey, K., Lahiani, M. H., Hicks, V. K., Hudson, M. K., Green, M. J., & Khodakovskaya, M. (2018). Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE, 13(8), e0202274.

    Google Scholar 

  • Pandey, V.C., & Singh, V. (2019). Exploring the potential and opportunities of current tools for removal of hazardous materials from environments. In V. C. Pandey, & K. Bauddh (Eds.), Phytomanagement of Polluted Sites (ed., 501–516). Amsterdam, Elsevier.

  • Pérez-Labrada, F., Hernández-Hernández, H., López-Pérez, M. C., González-Morales, S., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2020). Nanoparticles in plants: Morphophysiological, biochemical, and molecular responses. In D. K. Tripathi, V. P. Singh, D. k. Chauhan, S. Sharma, S. M. prasad, N. K. Dubey, & N. Ramawat (Eds.), In Plant life under changing environment (eds, pp. 289–322). Academic Press.

  • Pillai, H. P., & Kottekottil, J. (2016). Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. Journal of Environmental Protection, 7(05), 734.

    CAS  Google Scholar 

  • Praveen, A., Khan, E., Ngiimei, D. S., Perwez, M., Sardar, M., & Gupta, M. (2018). Iron oxide nanoparticles as nano-adsorbents: A possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). Journal of Plant Growth Regulation, 37, 612–624.

    CAS  Google Scholar 

  • Rafique, M., Rashid, M., Imran, M., Shahzad, K., & Hussain, S. (2021). Applications of nanotechnology in agriculture: Recent advances, challenges, and future perspectives. Nanomaterials, 11(1), 171.

    Google Scholar 

  • Rahman, M. M., Hassan, M. M., Zhao, S., Ahmed, M. B., Hou, D., Islam, M. S., & Zhou, D. M. (2021). Potential human health risks and ecological hazards of trace elements in urban street dust of Guangzhou, China. Environmental Geochemistry and Health, 43(3), 1409–1427.

    Google Scholar 

  • Rizwan, M., Singh, M., Mitra, C. K., & Morve, R. K. (2014). Ecofriendly application of nanomaterials: Nanobioremediation. Journal of Nanoparticles, 2014, 1–7. https://doi.org/10.1155/2014/431787

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Rehman, M. Z., Adrees, M., Arshad, M., Qayyum, M. F., & Ok, Y. S. (2018). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmenal Safety, 147, 881–896.

    Google Scholar 

  • Rizwan, M., Ali, S., ur Rehman, M. Z., Malik, S., Adrees, M., Qayyum, M. F., & Ahmad, P. (2019). Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 41, 1–12.

    CAS  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Rehman, M. Z., Abbas, T., & Ok, Y. S. (2020). Mechanisms of nanoparticle-mediated alleviation of heavy metal toxicity in plants: A critical review. Environmnetal Science and Pollution Research, 27(18), 21549–21564.

    Google Scholar 

  • Romeh, A. A. A. (2018). Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water, Air, & Soil Pollution, 229, 1–13.

    CAS  Google Scholar 

  • Rossi, L., Zhang, W., & Ma, X. (2017). Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132–138.

    CAS  Google Scholar 

  • Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166.

    CAS  Google Scholar 

  • Rostami, M., Talarposhti, R. M., Mohammadi, H., & Demyan, M. S. (2019). Morpho-physiological response of Saffron (Crocus Sativus L.) to particle size and rates of zinc fertilizer. Communications in Soil Science and Plant Analysis, 50(10), 1250–1257.

    CAS  Google Scholar 

  • Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Frontiers in Environmental Science, 7, 66.

    Google Scholar 

  • Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M., & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421. https://doi.org/10.3390/plants10020421

    Article  CAS  Google Scholar 

  • Shabbir, A., Khan, M. M. A., Ahmad, B., Sadiq, Y., Jaleel, H., & Uddin, M. (2019). Efficacy of TiO2 nanoparticles in enhancing the photosynthesis, essential oil and khusimol biosynthesis in Vetiveria zizanioides L. Nash. Photosynthetica57(2), 599–606.

  • Shah, V., & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774.

    Google Scholar 

  • Shahid, M., Xiong, T., Wang, Q., Jiang, X., Ali, S., & Zhou, D. (2020). Heavy metal pollution in water and soil in the vicinity of the Guanting Reservoir, Hebei Province. China. Environmental Science and Pollution Research, 27(5), 4971–4985.

    Google Scholar 

  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., Niazi, N. K., & Sohail, M. I. (2021). nanoparticles role in phytoremediation of metal-contaminated soils: A review. Environmental Science and Pollution Research, 28(10), 11483–11504.

    Google Scholar 

  • Shirkhani, Z., Chehregani Rad, A., & Mohsenzadeh, F. (2021). Improving Cd-phytoremediation ability of Datura stramonium L. by Chitosan and Chitosan nanoparticles. Biologia, 76(8), 2161–2171.

    CAS  Google Scholar 

  • Silva, S., Dias, M. C., & Silva, A. M. (2022). Titanium and zinc based nanomaterials in agriculture: A promising approach to deal with (a) biotic stresses? Toxics, 10(4), 172. https://doi.org/10.3390/toxics10040172

    Article  CAS  Google Scholar 

  • Singh, J., & Lee, B. K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 170, 88–96. https://doi.org/10.1016/j.jenvman.2016.01.015

    Article  CAS  Google Scholar 

  • Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., & Ye, S. (2019). Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 49(9), 791–824. https://doi.org/10.1080/10643389.2018.1558891

    Article  Google Scholar 

  • Song, U., Song, Y., Huang, X., Zhang, Y., & Pang, L. (2021). Current status and perspectives on nanomaterials for phytoremediation: A review. Journal of Cleaner Production, 319, 128977.

    Google Scholar 

  • Souri, Z., Karimi, N., Sarmadi, M., & Rostami, E. (2017). Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnology, 11(6), 650–655.

    Google Scholar 

  • Srivastav, A., Yadav, K. K., Yadav, S., Gupta, N., Singh, J. K., Katiyar, R., & Kumar, V. (2018). Nano-phytoremediation of pollutants from contaminated soil environment: Current scenario and future prospects. In A. A. Ansari, S. S. Gill, R. Gill, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants (vol. 6, pp. 383–401).

  • Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M., & Woch, M. W. (2020). Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere, 240, 124922.

    CAS  Google Scholar 

  • Su, Y., Yan, X., Pu, Y., Xiao, F., Wang, D., & Yang, M. (2013). Risks of single-walled carbon nanotubes acting as contaminants-carriers: Potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environmental Science & Technology, 47(9), 4704–4710. https://doi.org/10.1021/es304479w

    Article  CAS  Google Scholar 

  • Suvarapu, L. N., & Baek, S. O. (2017). Determination of heavy metals in the ambient atmosphere: A review. Toxicology and Industrial Health, 33(1), 79–96.

    Google Scholar 

  • Szynkowska, M. I., Pawlaczyk, A., & Maćkiewicz, E. (2018). Bioaccumulation and biomagnification of trace elements in the environment. Recent advances in trace elements (pp. 251–276).

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In D. M. Whitcare (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 33–52). Springer.

    Google Scholar 

  • Tinkov, A. A., Filippini, T., Ajsuvakova, O. P., Skalnaya, M. G., Aaseth, J., Bjørklund, G., & Skalny, A. V. (2018). Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environmental Research, 162, 240–260.

    CAS  Google Scholar 

  • Tripathi, A., Liu, S., Singh, P. K., Kumar, N., Pandey, A. C., Tripathi, D. K., & Sahi, S. (2017). Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene, 11, 255–264.

    CAS  Google Scholar 

  • Tsai, M. S., Chen, M. H., Lin, C. C., Liu, C. Y., & Chen, P. C. (2019). Children’s environmental health based on birth cohort studies of Asia (2)–Air pollution, pesticides, and heavy metals. Environmental Research, 179, 108754.

    CAS  Google Scholar 

  • Tung, H. T., Nam, N. B., Huy, N. P., Luan, V. Q., Hien, V. T., Phuong, T. T. B., & Nhut, D. T. (2018). A system for large scale production of chrysanthemum using microponics with the supplement of silver nanoparticles under light-emitting diodes. Scientia Horticulturae, 232, 153–161.

    CAS  Google Scholar 

  • USEPA. (1997). Health effects assessment summary tables (Heast) (p. 1997). Environmental Protection Agency, Washington, D.C.: U.S.

    Google Scholar 

  • Vaverková, M. D., Maxianová, A., Winkler, J., Adamcová, D., & Podlasek, A. (2019). Environmental consequences and the role of illegal waste dumps and their impact on land degradation. Land Use Policy, 89, 104234. https://doi.org/10.1016/j.landusepol.2019.104234

    Article  Google Scholar 

  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59–69.

    CAS  Google Scholar 

  • Wang, H., Jia, Y., Wang, S., Zhu, H., & Wu, X. (2009). Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis. Journal of Hazardous Materials, 167(1–3), 641–646.

    CAS  Google Scholar 

  • Wang, Z., Yue, L., Dhankher, O. P., & Xing, B. (2020). Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 142, 105831. https://doi.org/10.1016/j.envint.2020.105831

    Article  CAS  Google Scholar 

  • Wang, F., Zhong, H., Liu, L., Gao, Q., Zhang, M., & Guo, X. (2021). Pollution characteristics and source analysis of Cd, Hg, and Pb in the paddy soils of Dazu District, Southwest China. International Journal of Environmental Research and Public Health, 18(8), 4084.

  • Wang, Z. Y., Yu, X. L., Gao, D. M., Feng, W. Q., Xing, B. S., & Li, F. M. (2010). Effect of nano-rutile TiO2 and multiwalled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental Science, 31, 480–487. https://doi.org/10.13227/j.hjkx.2010.02.026

  • Wijayawardena, M. A. A., Megharaj, M., & Naidu, R. (2016). Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. In L.S. Donald (Ed.), Advances in Agronomy (vol. 138, pp. 175–234). Elsevier Inc, Amsterdam, Netherlands.

  • Wuana, R. A., & Okieimen, F. E. (2021). Nanoparticles in remediation technologies for soil and groundwater pollution. Journal of Environmental Management, 285, 112083.

    Google Scholar 

  • Xia, X., Lin, S., Zhao, J., Zhang, W., Lin, K., Lu, Q., & Zhou, B. (2018). Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida). Chemosphere, 192, 43–50.

    CAS  Google Scholar 

  • Xiao, R., Ali, A., Wang, P., Li, R., Tian, X., & Zhang, Z. (2019). Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil. Chemosphere, 230, 510–518. https://doi.org/10.1016/j.chemosphere.2019.05.121

    Article  CAS  Google Scholar 

  • Yan, X., & Fan, G. (2018). Influence of structural parameters on the performance of gold-coated photonic crystal fiber polarization filter. Optical Engineering, 57(11), 117114–117114.

    CAS  Google Scholar 

  • Zahra, Z., Maqbool, T., Arshad, M., Badshah, M. A., Choi, H. K., & Hur, J. (2019). Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles. Chemosphere, 227, 17–25.

    CAS  Google Scholar 

  • Zaid, A., Ahmad, B., Jaleel, H., Wani, S. H., & Hasanuzzaman, M. (2020). A critical review on iron toxicity and tolerance in plants: Role of exogenous phytoprotectants (pp. 83–99). Plant micronutrients: Deficiency and toxicity management.

    Google Scholar 

  • Zand, A. D., Mikaeili Tabrizi, A., & Vaezi Heir, A. (2020). Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: Contribution of PGPR inoculation. Bioremediation Journal, 24(2–3), 171–189.

    CAS  Google Scholar 

  • Zand, A. D., & Tabrizi, A. M. (2021). Effect of zero-valent iron nanoparticles on the phytoextraction ability of Kochia scoparia and its response in Pb contaminated soil. Environmental Engineering Research, 26(4), 200227. https://doi.org/10.4491/eer.2020.227

  • Zhao, D., Cheng, M., Tang, W., Liu, D., Zhou, S., Meng, J., & Tao, J. (2018). Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma, 255, 1001–1013.

    CAS  Google Scholar 

  • Zhu, Y., Xu, F., Liu, Q., Chen, M., Liu, X., Wang, Y., & Zhang, L. (2019). Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Science of the Total Environment, 662, 414–421. https://doi.org/10.1016/j.scitotenv.2019.01.234

    Article  CAS  Google Scholar 

  • Złoch, M., Kowalkowski, T., Tyburski, J., & Hrynkiewicz, K. (2017). Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals. International Journal of Phytoremediation, 19(12), 1150–1164.https://doi.org/10.1080/15226514.2017.1328396

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have given consent to the publication of this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D., Arora, A., Panghal, V. et al. Unleashing the Feasibility of Nanotechnology in Phytoremediation of Heavy Metal–Contaminated Soil: A Critical Review Towards Sustainable Approach. Water Air Soil Pollut 235, 57 (2024). https://doi.org/10.1007/s11270-023-06874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06874-9

Keywords

Navigation