Skip to main content
Log in

A Reactive Transport Model Considering the Bioavailability of PAHs Based on Lagrangian Reactive Particle-Tracking Method

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Bioavailability is one of the important concepts affecting bioremediation of PAHs-contaminated site but often ignored in reaction transport models, resulting in failure of site repair prediction and incorrect evaluation of important parameters. A reaction transport model considering bioavailability is constructed that uses transition probability and Lagrangian methods to analyze the transport and reaction of PAHs in soil rather than the conventional reaction transport model. This method avoids the numerical problems associated with solving the transmission problem directly. The effects of soil physicochemical properties and biodegradation rate on the reaction and migration were evaluated using phenanthrene as model pollutant. It shows that low biodegradation rates are detrimental, may lead to elevated PAHs concentrations in liquids, prolong PAHs bioaccessibility, and create a risk of leakage, so the appropriate addition of reagents such as enzyme preparations is effective, but simply increasing the biodegradation rate is insufficient for contaminant removal from soil. Through sensitivity analysis, it was determined that the most important factor affecting the residual PAHs in soil should be the physical and chemical properties of soil, which provides a basis for the addition of surfactants, while it is also pointed out that the toxicity evaluation of surfactants is of great significance in soil remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Adam, I. K. U., et al. (2014). Experimental results and integrated modeling of bacterial growth on an insoluble hydrophobic substrate (Phenanthrene). Environmental Science & Technology, 48(15), 8717–8726.

    Article  CAS  Google Scholar 

  • Andricevic, R., & Foufoula-Georgiou, E. (1991). Modeling kinetic non-equilibrium using the first two moments of the residence time distribution. Stochastic Hydrology and Hydraulics, 5, 155–171.

    Article  Google Scholar 

  • Berlin, M., et al. (2015). Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario. Journal of Earth System Science, 124(3), 655–674.

    Article  CAS  Google Scholar 

  • Brimo, K., et al. (2016). Using a Bayesian approach to improve and calibrate a dynamic model of polycyclic aromatic hydrocarbons degradation in an industrial contaminated soil. Environmental Pollution, 215, 27–37.

    Article  CAS  Google Scholar 

  • Brimo, K., et al. (2018). In situ long-term modeling of phenanthrene dynamics in an aged contaminated soil using the Vsoil Platform. Science of the Total Environment, 619, 239–248.

    Article  Google Scholar 

  • Cipullo, S., et al. (2018). Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress Made and Research Needs. Science of the Total Environment, 615, 708–723.

    Article  CAS  Google Scholar 

  • Cornelissen, G., van Noort, P. C. M., & Govers, H. A. J. (1997). Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: Sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environmental Toxicology and Chemistry: An International Journal, 16(7), 1351–1357.

    Article  CAS  Google Scholar 

  • Cornelissen, G., et al. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology, 39(18), 6881–6895.

    Article  CAS  Google Scholar 

  • Dai, C., et al. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (Pahs) in coastal soil and sediments. Environmental Research, 205, 112423.

    Article  CAS  Google Scholar 

  • de Brogniez, D., et al. (2015). A map of the topsoil organic carbon content of Europe generated by a generalized additive model. European Journal of Soil Science, 66(1), 121–134.

    Article  Google Scholar 

  • Deary, M. E., Ekumankama, C. C., & Cummings, S. P. (2016). Development of a novel kinetic model for the analysis of Pah biodegradation in the presence of lead and cadmium co-contaminants. Journal of Hazardous Materials, 307, 240–252.

    Article  CAS  Google Scholar 

  • Ding, D., & Benson, D. A. (2015). Simulating biodegradation under mixing-limited conditions using Michaelis–Menten (Monod) kinetic expressions in a particle tracking model. Advances in Water Resources, 76, 109–119.

    Article  Google Scholar 

  • Ding, D., et al. (2017). Elimination of the reaction rate “Scale Effect”: Application of the Lagrangian reactive particle-tracking method to simulate mixing-limited, field-scale biodegradation at the schoolcraft (Mi, USA) site. Water Resources Research, 53(12), 10411–10432.

    Article  Google Scholar 

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (Pahs). Journal of Hazardous Materials, 172(2), 532–549.

    Article  CAS  Google Scholar 

  • Geng, C., et al. (2015). Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere, 119, 423–431.

    Article  CAS  Google Scholar 

  • Gerstl, Z. (1990). Estimation of organic chemical sorption by soils. Journal of Contaminant Hydrology, 6(4), 357–375.

    Article  CAS  Google Scholar 

  • Ghosal, D., et al. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Frontiers in Microbiology, 1369.

  • Han, J., et al. (2019). Polycyclic aromatic hydrocarbon (Pahs) geographical distribution in China and their source, risk assessment analysis. Environmental Pollution, 251, 312–327.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (Pahs): A review. Journal of Hazardous Materials, 169(1-3), 1–15.

    Article  CAS  Google Scholar 

  • Henri, C. V., & Fernàndez-Garcia, D. (2014). Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions. Water Resources Research, 50(9), 7206–7230.

    Article  Google Scholar 

  • Henri, C. V., & Fernandez-Garcia, D. (2015). A random walk solution for modeling solute transport with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of biofilms. Advances in Water Resources, 86, 119–132.

    Article  Google Scholar 

  • Imam, A., et al. (2022). Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresource Technology, 343, 126121.

    Article  CAS  Google Scholar 

  • Inácio, Â. S., et al. (2011). In vitro surfactant structure-toxicity relationships: Implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One, 6(5), e19850.

    Article  Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial Pah-degradation in soil. Environmental Pollution, 133(1), 71–84.

    Article  CAS  Google Scholar 

  • Johnson, M. D., Michael Keinath, T., & Weber, W. J. (2001). A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates. Environmental Science & Technology, 35(8), 1688–1695.

    Article  CAS  Google Scholar 

  • Kacem, M., & Benadda, B. (2018). Mathematical model for multiphase extraction simulation. Journal of Environmental Engineering, 144(6), 04018040.

    Article  Google Scholar 

  • Kacem, M., et al. (2019). Multiphase flow model for Napl infiltration in both the unsaturated and saturated zones. Journal of Environmental Engineering, 145(11), 04019072.

    Article  CAS  Google Scholar 

  • Kaestner, M., et al. (2014). Classification and modelling of nonextractable residue (Ner) formation of xenobiotics in soil–a synthesis. Critical Reviews in Environmental Science and Technology, 44(19), 2107–2171.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13(3), 241–248.

    Article  CAS  Google Scholar 

  • Kobayashi, T., et al. (2009). Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Science of the Total Environment, 407(22), 5805–5810.

    Article  CAS  Google Scholar 

  • Kumar, A., et al. (2021). Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, 284, 131325.

    Article  CAS  Google Scholar 

  • Li, J.-L., & Chen, B.-H. (2009). Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials, 2(1), 76–94.

    Article  CAS  Google Scholar 

  • Līcīte, I., et al. (2022). Nutrient-rich organic soil management patterns in light of climate change policy. Civil Engineering Journal, 8(10), 2290–2304.

    Article  Google Scholar 

  • Liste, H.-H., & Alexander, M. (2002). Butanol extraction to predict bioavailability of Pahs in soil. Chemosphere, 46(7), 1011–1017.

    Article  CAS  Google Scholar 

  • Liu, S.-H., et al. (2017). Bioremediation mechanisms of combined pollution of Pahs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33.

    Article  CAS  Google Scholar 

  • Lors, C., et al. (2010). Evolution of bacterial community during bioremediation of Pahs in a coal tar contaminated soil. Chemosphere, 81(10), 1263–1271.

    Article  CAS  Google Scholar 

  • Luthy, R. G., et al. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 31(12), 3341–3347.

    Article  CAS  Google Scholar 

  • Mackay, D., Shiu, W.-Y., & Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press.

    Book  Google Scholar 

  • Maletić, S. P., et al. (2019). State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: Sources, fate, bioavailability and remediation techniques. Journal of Hazardous Materials, 365, 467–482.

    Article  Google Scholar 

  • Mechlińska, A., et al. (2009). Evolution of models for sorption of Pahs and Pcbs on geosorbents. TrAC Trends in Analytical Chemistry, 28(4), 466–482.

    Article  Google Scholar 

  • Morvillo, M., Rizzo, C. B., & De Barros, F. P. J. (2021). A scalable parallel algorithm for reactive particle tracking. Journal of Computational Physics, 446, 110664.

    Article  Google Scholar 

  • Mösche, M., & Meyer, U. (2002). Toxicity of linear alkylbenzene sulfonate in anaerobic digestion: Influence of exposure time. Water Research, 36(13), 3253–3260.

    Article  Google Scholar 

  • Nguyen, T. H., Goss, K.-U., & Ball, W. P. (2005). Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science & Technology, 39(4), 913–924.

    Article  CAS  Google Scholar 

  • Nistratov, A. V., et al. (2022). Thermal regeneration and reuse of carbon and glass fibers from waste composites. Emerging Science Journal, 6, 967–984.

    Article  Google Scholar 

  • Northcott, G. L., & Jones, K. C. (2000). Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environmental Pollution, 108(1), 19–43.

    Article  CAS  Google Scholar 

  • Posada-Baquero, R., et al. (2022). Determining the bioavailability of benzo (a) pyrene through standardized desorption extraction in a certified reference contaminated soil. Science of the Total Environment, 803, 150025.

    Article  CAS  Google Scholar 

  • Rahbaralam, M., Fernandez-Garcia, D., & Sanchez-Vila, X. (2015). Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A Kernel Density Estimation Approach. Journal of Computational Physics, 303, 95–104.

    Article  Google Scholar 

  • Raji, V. R., & Packialakshmi, S. (2022). Assessing the wastewater pollutants retaining for a soil aquifer treatment using batch column experiments. Civil Engineering Journal, 8(7), 1482–1491.

    Article  Google Scholar 

  • Ren, X., et al. (2018). Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610, 1154–1163.

    Article  Google Scholar 

  • Risken, H., & Risken, H. (1996). Fokker-Planck Equation. Springer.

    Book  Google Scholar 

  • Rubin, J. (1983). Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resources Research, 19(5), 1231–1252.

    Article  CAS  Google Scholar 

  • Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006). A review and numerical assessment of the random walk particle tracking method. Journal of Contaminant Hydrology, 87(3-4), 277–305.

    Article  CAS  Google Scholar 

  • Samanta, S. K., Chakraborti, A. K., & Jain, R. K. (1999). Degradation of phenanthrene by different bacteria: Evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology, 53, 98–107.

    Article  CAS  Google Scholar 

  • Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243–248.

    Article  CAS  Google Scholar 

  • Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science, 54(4), 809–818.

    Article  CAS  Google Scholar 

  • Sharma, P., Mayes, M. A., & Tang, G. (2013). Role of soil organic carbon and colloids in sorption and transport of Tnt, Rdx and Hmx in training range soils. Chemosphere, 92(8), 993–1000.

    Article  CAS  Google Scholar 

  • Sole-Mari, G., et al. (2017). A Kde-based random walk method for modeling reactive transport with complex kinetics in porous media. Water Resources Research, 53(11), 9019–9039.

    Article  Google Scholar 

  • Sun, K., et al. (2013). Interaction mechanism of benzene and phenanthrene in condensed organic matter: Importance of adsorption (Nanopore-Filling). Geoderma, 204, 68–74.

    Article  Google Scholar 

  • Tao, X.-Q., et al. (2007). Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World Journal of Microbiology and Biotechnology, 23, 647–654.

    Article  CAS  Google Scholar 

  • Tavakkoli, E., et al. (2015). Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique. Environmental Pollution, 199, 244–252.

    Article  CAS  Google Scholar 

  • Thavamani, P., Megharaj, M., & Naidu, R. (2012). Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant Pahs degrading bacterial consortium. Biodegradation, 23, 823–835.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S., & Brümmer, G. W. (2005). Kinetics of polycyclic aromatic hydrocarbon (Pah) degradation in long-term polluted soils during bioremediation. Plant and Soil, 275, 31–42.

    Article  CAS  Google Scholar 

  • Tian, L., Ma, P., & Zhong, J.-J. (2002). Kinetics and key enzyme activities of phenanthrene degradation by pseudomonas mendocina. Process Biochemistry, 37(12), 1431–1437.

    Article  CAS  Google Scholar 

  • Umeh, A. C., et al. (2020). Bioavailability and bioaccessibility of hydrophobic organic contaminants in soil and associated desorption-based measurements, pp. 293–350.

  • Valocchi, A. J., Bolster, D., & Werth, C. J. (2019). Mixing-limited reactions in porous media. Transport in Porous Media, 130, 157–182.

    Article  Google Scholar 

  • Vehapi, M., & Özçimen, D. (2021). Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation. Archives of Microbiology, 203(6), 3389–3397.

    Article  CAS  Google Scholar 

  • Vila, J., Tauler, M., & Grifoll, M. (2015). Bacterial Pah degradation in marine and terrestrial habitats. Current Opinion in Biotechnology, 33, 95–102.

    Article  CAS  Google Scholar 

  • Wang, Y., et al. (2017). Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Chemosphere, 187, 404–412.

    Article  CAS  Google Scholar 

  • White, J. C., et al. (1999). Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environmental Toxicology and Chemistry: An International Journal, 18(8), 1720–1727.

    Article  CAS  Google Scholar 

  • Wick, L. Y., Colangelo, T., & Harms, H. (2001). Kinetics of mass transfer-limited bacterial growth on solid Pahs. Environmental Science & Technology, 35(2), 354–361.

    Article  CAS  Google Scholar 

  • Wilcke, W. (2000). Synopsis polycyclic aromatic hydrocarbons (Pahs) in soil—A review. Journal of Plant Nutrition and Soil Science, 163(3), 229–248.

    Article  CAS  Google Scholar 

  • Zheng, C., & Bennett, G. D. (2002). Applied contaminant transport modeling (Vol. 2). Wiley-Interscience.

    Google Scholar 

Download references

Funding

This study received financial supports from the National Key R&D Program of the Science and Technology of China(2020YFC1808805).

Author information

Authors and Affiliations

Authors

Contributions

Tao CHEN: funding acquisition, conceptualization, methodology, revision; Wenbio HUANG: experiment/writing—original draft; Yafu ZHANG, Yanli DONG, Bo FU, and Haiyan LI: formal analysis, data curation.

Corresponding author

Correspondence to Tao Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Huang, W., Zhang, Y. et al. A Reactive Transport Model Considering the Bioavailability of PAHs Based on Lagrangian Reactive Particle-Tracking Method. Water Air Soil Pollut 234, 759 (2023). https://doi.org/10.1007/s11270-023-06778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06778-8

Keywords

Navigation