Skip to main content
Log in

Application of Serratia marcescens AJRR-22 for Effective Amelioration of Hexavalent Chromium from Industrial Effluents Contaminating Bio-geosphere

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The strain Serratia marcescens AJRR-22, isolated from an iron mine, was found to possess the ability of reduction of hexavalent chromium, a potent pollutant of soil and water. In this study, the parameters for chromium (VI) resistance and bio-reduction were determined and optimized by response surface method (RSM). The decreased level of chromate mitigating ability of the strain in sterile medium indicates the efficacy of the strain to thrive and act in natural conditions with indigenous microbes and co-pollutants. To prove the beneficial environmental effect of Serratia marcescens AJRR-22–mediated chromium reduction, the strain was directly applied to mitigate issue concerning high level of hexavalent chromium content in both textile washout–enriched agricultural soil and tannery effluent before discharge. The atomic absorption spectroscopic (AAS) analysis indicated about 80% reduction of the hexavalent chromium from both of those samples within stipulated time. It has also shown to aid in observable enhancement of growth and germination of model plant, Cicer arietinum, in the agricultural field loaded with hexavalent chromium. The bactericidal activity of the strain indicates the ability of the strain to survive in polluted site, and its moderate antibiotic resistance makes it more applicable for effective bioremediation with the lesser chance of generation of antibiotic resistance. Hence, the present strain can be used for sustained in situ and ex situ bioremediation of hexavalent chromium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acharyya, S., Das, A., & Thaker, T. P. (2023). Remediation processes of hexavalent chromium from groundwater: A short review. AQUA — Water Infrastructure, Ecosystems and Society, 72(5), 648–662. https://doi.org/10.2166/aqua.2023.123

    Article  Google Scholar 

  • Ayele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021, 1–21. https://doi.org/10.1155/2021/7694157

    Article  CAS  Google Scholar 

  • Basu, M., Bhattacharya, S., & Paul, A. K. (1997). Isolation and characterization of chromium-resistant bacteria from tannery effluents. Bulletin of Environmental Contamination and Toxicology, 58(4), 535–542. https://doi.org/10.1007/s001289900368

    Article  CAS  Google Scholar 

  • Biemer, J. J. (1973). Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals of Clinical & Laboratory Science, 3(2), 135–140.

    CAS  Google Scholar 

  • Biswas, R., Halder, U., Kabiraj, A., Mondal, A., & Bandopadhyay, R. (2021). Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology, 203(6), 2761–2770. https://doi.org/10.1007/s00203-021-02275-w

    Article  CAS  Google Scholar 

  • Chen, F., Ma, J., Akhtar, S., Khan, Z. I., Ahmad, K., Ashfaq, A., Nawaz, H., & Nadeem, M. (2022). Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agricultural Water Management, 272, 107833. https://doi.org/10.1016/j.agwat.2022.107833

    Article  Google Scholar 

  • Clements, T., Ndlovu, T., & Khan, W. (2019). Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research, 229, 126329. https://doi.org/10.1016/j.micres.2019.126329

    Article  CAS  Google Scholar 

  • Deote, S., Ingle, A. B., & Magar, S. P. (2018). Study on antibiotic sensitivity of chromium tolerant bacteria isolated from chromite mine area. Journal of Pharmacy Research, 12(3), 352–361.

    CAS  Google Scholar 

  • Feyissa, N., Alemu, T., Jirata Birri, D., & Dessalegn, A. (2023). Isolation, identification, and determination of antibiogram characteristics of Staphylococcus aureus in cow milk and milk products (yoghurt and cheese) in West Showa Zone, Ethiopia. International Dairy Journal, 137, 105503. https://doi.org/10.1016/j.idairyj.2022.105503

    Article  CAS  Google Scholar 

  • Ghosh, S., Jasu, A., & Ray, R. R. (2021). Hexavalent chromium bioremediation with insight into molecular aspect: An overview. Bioremediation Journal, 25(3), 225–251. https://doi.org/10.1080/10889868.2021.1884529

    Article  CAS  Google Scholar 

  • Hausladen, D. M., Alexander-Ozinskas, A., McClain, C., & Fendorf, S. (2018). Hexavalent chromium sources and distribution in California groundwater. Environmental Science & Technology, 52(15), 8242–8251. https://doi.org/10.1021/acs.est.7b06627

    Article  CAS  Google Scholar 

  • Hossan, S., Hossain, S., Islam, M. R., Kabir, M. H., Ali, S., Islam, M. S., Imran, K. M., Moniruzzaman, M., Mou, T. J., Parvez, A. K., & Mahmud, Z. H. (2020). Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. International Journal of Environmental Research and Public Health, 17(17), 6013. https://doi.org/10.3390/ijerph17176013

    Article  CAS  Google Scholar 

  • Islam, Md. R., Biswas, L., Nasim, S. M., Islam, Md. A., Haque, Md. A., & Huda, A. K. M. N. (2022). Physiological responses of chickpea (Cicer arietinum) against chromium toxicity. Rhizosphere, 24, 100600. https://doi.org/10.1016/j.rhisph.2022.100600

    Article  Google Scholar 

  • Jasu, A., Manna, B., Das, S. C., Chakraborty, B., Pramanik, G., & Ray, R. R. (2023). Docking assisted mechanistic elucidation of bio conversion of hexavalent chromium by Serratia marcescens AJRR-22 that is effective yet long term sustainable in bio-geosphere.Bioresource Technology, pp. 130009. https://doi.org/10.1016/j.biortech.2023.130009

  • Kadouri, D. E., & Shanks, R. M. Q. (2013). Identification of a methicillin-resistant Staphylococcus aureus inhibitory compound isolated from Serratia marcescens. Research in Microbiology, 164(8), 821–826. https://doi.org/10.1016/j.resmic.2013.06.002

    Article  CAS  Google Scholar 

  • Kannan, A., Mishra, R., Sinha, V., & Upreti, R. (2012). Reduction of chromium-vi by chromium resistant lactobacilli: A prospective bacterium for bioremediation. Toxicology International, 19(1), 25. https://doi.org/10.4103/0971-6580.94512

    Article  CAS  Google Scholar 

  • Kookhaee, F., Bafroee, A. S. T., & Jabalameli, L. (2022). Isolation and characterization of chromium (VI) tolerant bacteria from tannery effluents. Journal of Environmental Health Science and Engineering, 20(1), 443–458. https://doi.org/10.1007/s40201-022-00791-5

    Article  CAS  Google Scholar 

  • Kumar, A., Song, H.-W., Mishra, S., Zhang, W., Zhang, Y.-L., Zhang, Q.-R., & Yu, Z.-G. (2023). Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere, 318, 137894. https://doi.org/10.1016/j.chemosphere.2023.137894

    Article  CAS  Google Scholar 

  • Li, M., Zhang, Q., Sun, X., Karki, K., Zeng, C., Pandey, A., Rawat, B., & Zhang, F. (2020). Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: distribution, source identification and pollution assessment. Chemosphere, 244, 125410. https://doi.org/10.1016/j.chemosphere.2019.125410

    Article  CAS  Google Scholar 

  • Magashi, L., & Joseph, J. (2021). Determination of phosphorus, nitrogen, organic carbon, pH and particle size analysis in Samaru soil, Kaduna-Nigeria

  • Mishra, S., Klümper, U., Voolaid, V., Berendonk, T. U., & Kneis, D. (2021). Simultaneous estimation of parameters governing the vertical and horizontal transfer of antibiotic resistance genes. Science of the Total Environment, 798, 149174. https://doi.org/10.1016/j.scitotenv.2021.149174

    Article  CAS  Google Scholar 

  • Mondal, M., Biswas, G., & Bhattacharya, R. (2016). Environmental stresses from dye factories: A case study at Nadia, West Bengal. International Journal of Environmental Sciences, 6(4), 467–471.

    CAS  Google Scholar 

  • Nageswaran, N., & Ramteke, P. W. (2012). Antibiotic susceptibility and heavy metal tolerance pattern of Serratia Marcescens isolated from soil and water. Journal of Bioremediation and Biodegradation, 03(07). https://doi.org/10.4172/2155-6199.1000158

  • Paul, O., Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). In situ and ex situ bioremediation of heavy metals: The present scenario. Journal of Environmental Engineering and Landscape Management, 29(4), 454–469. https://doi.org/10.3846/jeelm.2021.15447

    Article  Google Scholar 

  • Paul, A., Dey, S., Ram, D. K., & Das, A. P. (2023). Hexavalent chromium pollution and its sustainable management through bioremediation. Geomicrobiology Journal, 1–11. https://doi.org/10.1080/01490451.2023.2218377

  • Poelarends, G. J., Mazurkiewicz, P., & Konings, W. N. (2002). Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1555(1–3), 1–7. https://doi.org/10.1016/S0005-2728(02)00246-3

    Article  CAS  Google Scholar 

  • Rose, S. B., & Miller, R. E. (1939). Studies with the agar cup-plate method: I. A standardized agar cup-plate technique. Journal of Bacteriology, 38(5), 525–537. https://doi.org/10.1128/jb.38.5.525-537.1939

    Article  CAS  Google Scholar 

  • Roy, K., Bannerjee, S., Hazra, T., Das, D., Pandit, S., Lahiri, D., Nag, M., Ray, R. R., Sarkar, T., Moovendhan, M., & Kavisri, M. (2023). Exopolysaccharide production by Anabaena sp. PCC 7120: Physicochemical parameter optimization and two-stage cultivation strategy to maximize the product yield. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03696-3

    Article  Google Scholar 

  • Samani, M. R., & Toghraie, D. (2019). Removal of hexavalent chromium from water using polyaniline/ wood sawdust/ poly ethylene glycol composite: An experimental study. Journal of Environmental Health Science and Engineering, 17(1), 53–62. https://doi.org/10.1007/s40201-018-00325-y

    Article  CAS  Google Scholar 

  • Sanyal, T., Kaviraj, A., & Saha, S. (2015). Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India. Journal of Advanced Research, 6(6), 995–1002. https://doi.org/10.1016/j.jare.2014.12.002

    Article  CAS  Google Scholar 

  • Saravanan, A., Kumar, P. S., Hemavathy, R. V., Jeevanantham, S., Harikumar, P., Priyanka, G., & Devakirubai, D. R. A. (2022). A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Science of the Total Environment, 812, 152456. https://doi.org/10.1016/j.scitotenv.2021.152456

    Article  CAS  Google Scholar 

  • Saud, S., Wang, D., Fahad, S., Javed, T., Jaremko, M., Abdelsalam, N. R., & Ghareeb, R. Y. (2022). The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Science, 13, 994785. https://doi.org/10.3389/fpls.2022.994785

    Article  Google Scholar 

  • Shafiq, M., Shaukat, T., Nazir, A., & Bareen, F. E. (2017). Modeling of Cr contamination in the agricultural lands of three villages near the leather industry in Kasur, Pakistan, using statistical and GIS techniques. Environmental Monitoring and Assessment, 189(8), 423. https://doi.org/10.1007/s10661-017-6126-9

    Article  CAS  Google Scholar 

  • Shahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., Asraful Alam, Md., & Mehmood, M. A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of the Total Environment, 704, 135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  CAS  Google Scholar 

  • Silambarasan, S., & Jayanthi, A. (2010). A study on antibiotic resistance and metal tolerance of bacteria isolated from industrial site. Nature, Environment and Pollution Technology, 9(2), 261–266. ISSN: 0972–6268.

    CAS  Google Scholar 

  • Singh, D., Sharma, N. L., Singh, C. K., Sarkar, S. K., Singh, I., & Dotaniya, M. L. (2020). Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. PLOS ONE, 15(12), e0243032. https://doi.org/10.1371/journal.pone.0243032

    Article  CAS  Google Scholar 

  • Soni, S. K., Kumar, G., Bajpai, A., Singh, R., Bajapi, Y., Laxmi., & Tiwari, S. (2023). Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. Journal of Trace Elements in Medicine and Biology, 76, 127116. https://doi.org/10.1016/j.jtemb.2022.127116

  • Su, C., Xiang, Z., Liu, Y., Zhao, X., Sun, Y., Li, Z., Li, L., Chang, F., Chen, T., Wen, X., Zhou, Y., & Zhao, F. (2016). Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. Nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics, 17(1), 865. https://doi.org/10.1186/s12864-016-3171-7

    Article  CAS  Google Scholar 

  • Taylor, R. H., Allen, M. J., & Geldreich, E. E. (1983). Standard plate count: A comparison of pour plate and spread plate methods. Journal - American Water Works Association, 75(1), 35–37. https://doi.org/10.1002/j.1551-8833.1983.tb05055.x

    Article  Google Scholar 

  • Ugulu, I., Khan, Z. I., Safdar, H., Ahmad, K., & Bashir, H. (2021). Chromium bioaccumulation by plants and grazing livestock as affected by the application of sewage irrigation water: Implications to the food chain and health risk. International Journal of Environmental Research, 15(2), 261–274. https://doi.org/10.1007/s41742-021-00311-7

    Article  CAS  Google Scholar 

  • Zahoor, A., & Rehman, A. (2009). Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences, 21(6), 814–820. https://doi.org/10.1016/S1001-0742(08)62346-3

    Article  CAS  Google Scholar 

  • Zeng, Q., Hu, Y., Yang, Y., Hu, L., Zhong, H., & He, Z. (2019). Cell envelop is the key site for Cr(VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(VI) reducing bacterium. Journal of Hazardous Materials, 368, 149–155. https://doi.org/10.1016/j.jhazmat.2019.01.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We convey sincere thanks to Mr. Joydeep Mukherjee, R.V. Briggs Pvt Ltd., Kolkata, for providing the AAS facility. Finally, the authors thank CRNN-Kolkata for providing required instrumental services and facilities.

Funding

This study was funded by the Department of Biotechnology, Government of West Bengal, India (RD-21/STBT-13015/2/2019-BT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and designed methodologies: AJ; formal analysis and investigation: AJ, BD, and SCD; writing — original draft preparation: AJ; writing — review and editing: AJ and RRR; fund acquisition and supervision: RRR.

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasu, A., Dutta, B., Das, S.C. et al. Application of Serratia marcescens AJRR-22 for Effective Amelioration of Hexavalent Chromium from Industrial Effluents Contaminating Bio-geosphere. Water Air Soil Pollut 234, 752 (2023). https://doi.org/10.1007/s11270-023-06757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06757-z

Keywords

Navigation