Skip to main content

Advertisement

Log in

Eco-friendly Degradation of Tannery Sludge with Coir Pith and Nava Rasa Karaisal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The disposal of tannery sludge (TNS) without treatment causes severe toxic metal contamination in the ecosystem and food chain. Hence, eco-friendly solid waste management is essentially needed for the tanneries. The aim of this study was to degrade the raw TNS into composted sludge using coir pith (CP) as an adsorbent for organic compounds and other pollutants and Nava Rasa Karaisal (NRK) as a consortium of microorganisms. The TNS treated with CP and NRK showed decolorization and a reduction in pH. After the treatment, the electrical conductivity decreased from 24.7 to 6.31 μS/cm; total dissolved solids (28.4 ppm), salinity (21.2 ppm) and dissolved oxygen (7.5 mg/L) in the untreated TNS were reduced to 10.9 ppm, 4.9 ppm, and 4.6 mg/L in the TNS+CP+NRK treatment, respectively. SEM analysis showed small, smooth-walled structures on the surface of composted TNS compared to rough textures on the untreated TNS. Energy-dispersive spectroscopy analysis showed a higher number of elements in NRK (16) than in untreated sludge (8). Four different bacteria and six fungi were dominant in the treated tannery waste. The effect of different dilutions (12.5%, 25%, 50%, 75%, and 100%) of treated TNS on seed germination of Vigna radiata L. was carried out to check the feasibility of using the treated TNS for plant irrigation and growth. The results showed maximum growth at lower concentrations (12.5% and 25%). The results indicated that TNS treatment using CP and NRK is a potential eco-friendly approach to remediating the sludge waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

TNS:

Tannery sludge

CP:

Coir pith

NRK :

Nava Rasa Karaisal

EC:

Electrical conductivity

DO :

Dissolved oxygen

TDS :

Total dissolved solids

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive spectroscopy

h :

Hours

DNA:

Deoxyribonucleic acid

PCR:

Polymerase chain reaction

References

  • Abrouki, Y., Mabrouki, J., Anouzla, A., Rifib, S. K., Zahiri, Y., Nehhal, S., Yadinia, A. E., Slimani, R., Hajjaji, S. E., Loukili, H., & Souabib, S. (2020). Optimization and modeling of a fixed-bed biosorption of textile dye using agricultural biomass from the Moroccan Sahara. Desalination and Water Treatment, 240, 144–151. https://doi.org/10.5004/dwt.2021.27704

    Article  Google Scholar 

  • Adamu, A., Ijah, U. J., Riskuwa, M. L., Ismail, H. Y., Ibrahim, U. B., Maryam Abacha Women, P., & Hospital Sokoto, C. P. (2015). Isolation of biosurfactant producing bacteria from tannery effluents in Sokoto Metropolis, Nigeria. International Journal of Innovative Science, Engineering & Technology, 2(1), 366–377. https://doi.org/10.13140/RG.2.2.13924.12167

    Article  Google Scholar 

  • Ajayan, K. V., Selvaraju, M., Unnikannan, P., & Sruthi, P. (2015). Phycoremediation of tannery wastewater using microalgae Scenedesmus species. International Journal of Phytoremediation, 17(10), 907–916. https://doi.org/10.1080/15226514.2014.989313

    Article  CAS  Google Scholar 

  • Amanial, H. R. (2016). Physico chemical characterization of tannery effluent and its impact on the nearby river. Open Access Library Journal, 3, e2427. https://doi.org/10.4236/oalib.1102427

    Article  Google Scholar 

  • Anandhraj, B., Krishna Moorthy, S., & Malliga, P. (2012). Studies on the degradation of coir pith using fresh water cyanobacterium Oscillatoria annae BDU 6 and its lignolytic enzyme activity in response to coir pith degradation. International Journal of Current Science, 78–86. https://ijcspub.org/papers/IJCSP10A1292.pdf

  • AOAC. (2000). Official method of Analysis (17th ed.). Agricultural chemistry.

    Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (17th ed.). American Public Health Association.

    Google Scholar 

  • Amaro de Sales, R., Pereira Rossini, F., Galvao, E. R., da Silva Berilli, S., Pereira Rodrigues, W., Barcelos, R., de Andrade, J., et al. (2021). Growth and physiological parameters in conilon coffee seedlings fertilized through foliar application of tannery sludge. Plant Physiology Reports, 26(4), 722–728. https://doi.org/10.1007/s40502-021-00634-9

    Article  CAS  Google Scholar 

  • Antunes, L. P., Martins, L. F., Pereira, R. V., Thomas, A. M., Barbosa, D., Lemos, L. N., et al. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports, 6(1), 38915. https://doi.org/10.1038/srep38915

    Article  CAS  Google Scholar 

  • Apte, A., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010

    Article  CAS  Google Scholar 

  • Arasappan, S., Rajagopal, K., & Sugasini, A. (2015). Characterization of Physicochemical parameters and heavy metal analysis of tannery effluent Nanomaterials for Bio-Medical Applications View project Soft polymer modified metal oxides phases. International Journal of Current Microbiology and Applied Sciences, 4(9), 349–359. http://www.ijcmas.com

    Google Scholar 

  • Araujo, A. S. F., de Pereira, A. P. D. A., Antunes, J. E. L., Oliveira, L. M. D. S., de Melo, W. J., Rocha, S. M. B., et al. (2021). Dynamics of bacterial and archaeal communities along the composting of tannery sludge. Environmental Science and Pollution Research, 28(45), 64295–64306. https://doi.org/10.1007/s11356-021-15585-9

    Article  CAS  Google Scholar 

  • Ashraf, S., Naveed, M., Afzal, M., Ashraf, S., Rehman, K., Hussain, A., & Zahir, Z. A. (2018). Bioremediation of tannery effluent by Cr- and salt-tolerant bacterial strains. Environmental Monitoring and Assessment, 190(12). https://doi.org/10.1007/s10661-018-7098-0

  • Balasubramanian, G., & Dhevagi, P. (2016). Effect of treated tannery effluent and domestic waste water irrigation on Tagetes erecta. Asian Journal of Environmental Science, 11(2), 164–170. https://doi.org/10.15740/has/ajes/11.2/164-170

  • Baldi, F., Vaughan, A. M., & Olsont, G. J. (1990). Chromium(VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Applied And Environmental Microbiology, 56(4), 913–918. http://aem.asm.org/

    Article  CAS  Google Scholar 

  • Bhagat, B., & Malliga, P. (2015). Treatment of textile dye effluent using marine cyanobacterium Lyngbya sp. with different agrowastes and its effect on the growth of cyanobacterium. Journal of Environmental Biology, 36, 623–626.

    Google Scholar 

  • Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination SN. Applied Sciences, 3, 286. https://doi.org/10.1007/s42452-021-04301-4

    Article  CAS  Google Scholar 

  • Chandra, R., Bharagava, R. N., Kapley, A., & Purohit, H. J. (2011). Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresource Technology, 102(3), 2333–2341. https://doi.org/10.1016/j.biortech.2010.10.087

    Article  CAS  Google Scholar 

  • Chatterjee, S., Ghosh, I., & Mukherjea, K. (2011). Uptake and removal of toxic Cr(VI) by Pseudomonas aeruginosa: Physico-chemical and biological evaluation. Current Science, 101, 645–652. https://www.jstor.org/stable/24078627

    CAS  Google Scholar 

  • Chen, J. P., & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Industrial and Engineering Chemistry Research, 44(26), 9931–9942. https://doi.org/10.1021/IE050678T/ASSET/IMAGES/LARGE/IE050678TF1.JPEG

    Article  CAS  Google Scholar 

  • Chen, Y., Yang, W., Chao, Y., Wang, S., Tang, Y. T., & Qiu, R. L. (2017). Metaltolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil, 413, 203–216. https://doi.org/10.1007/s11104-016-3091-y

    Article  CAS  Google Scholar 

  • Chowdhury, M. A., & Fatema, K. J. (2016). Review of renewable biosorbent from coir pith waste for textile effluent treatment. International Journal of Textile Science, 5(6), 132–140. https://doi.org/10.5923/J.TEXTILE.20160506.02

    Article  Google Scholar 

  • De Sousa, R. S., Santos, V. M., de Melo, W. J., Nunes, L. A. P. L., van den Brink, P. J., & Araújo, A. S. F. (2017). Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil. Ecotoxicology, 26(10), 1366–1377. https://doi.org/10.1007/s10646-017-1861-9

    Article  CAS  Google Scholar 

  • Deepa, A., Prakash, P., & Mishra, B. K. (2019). Performance of biochar-based filtration bed for the removal of Cr(VI) from pre-treated synthetic tannery wastewater. Environmental Technology, 42(2), 257–269. https://doi.org/10.1080/09593330.2019.1626912

    Article  CAS  Google Scholar 

  • El Mouhri, G., Merzouki, M., Belhassan, H., Miyah, Y., Amakdouf, H., Elmountassir, R., & Lahrichi, A. (2020). Continuous adsorption modeling and fixed bed column studies: adsorption of tannery wastewater pollutants using beach sand. Journal of Chemistry, 1-9. https://doi.org/10.1155/2020/7613484

  • Eman, F. S., & Eman, A. (2013). Removal of heavy metals from waste water of tanning leather industry by fungal species isolated from polluted soil. African Journal of Biotechnology, 12(27), 4351–4355. https://doi.org/10.5897/AJB2013.12224

    Article  CAS  Google Scholar 

  • Fathima, A., Rao, J. R., & Unni Nair, B. (2012). Trivalent chromium removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus sp isolated from chromium polluted soil. Journal of Chemical Technology & Biotechnology, 87(2), 271–279. https://doi.org/10.1002/jctb.2710

    Article  CAS  Google Scholar 

  • Feng, G., Shan, Z., Shuqing, L., & Hui, C. (2013). The production of organic fertilizer using tannery sludge. Journal of American Leather Chemists Association, 108(5), 189–196.

    CAS  Google Scholar 

  • Ghaleb, A. A. S., Kutty, S. R. M., Ho, Y.-C., Jagaba, A. H., Noor, A., Al-Sabaeei, A. M., & Almahbashi, N. M. Y. (2020). Response surface methodology to optimize methane production from mesophilic anaerobic co-digestion of oily-biological sludge and sugarcane bagasse. Sustainability, 12(5), 2116. https://doi.org/10.3390/su12052116

    Article  CAS  Google Scholar 

  • Gontia, I., Tripathi, N., & Tiwari, S. (2014). A simple and rapid DNA extraction protocol for filamentous fungi efficient for molecular studies. Indian Journal of Biotechnology, 13, 536–539.

    Google Scholar 

  • Hailu, M., Muthuswamy, M., & Yohannes, P. (2019). Effects of tannery effluent on seed germination and growth performance of selected varieties of maize (Zea mays L.). International Journal of Scientific and Research Publications, 9(3), 242–251. https://doi.org/10.29322/IJSRP.9.03.2019.p8739

    Article  Google Scholar 

  • Hamilton, D. (2016). Organic matter content of wastewater and manure (pp. 1–4). Oklahoma Cooperative Extension Service Waste Management Specialist Biosystems and Agricultural Engineering. http://osufacts.okstate.edu

    Google Scholar 

  • Hashem, M., Mim, S., Ahsan, A., Sheikh, M., Bushra, S., & Rownok, A. (2021). Chromium adsorption on coir pith charcoal from tannery wastewater. Bangladesh Journal of Scientific and Industrial Research, 56(1), 53–60. https://doi.org/10.3329/bjsir.v56i1.52696

    Article  CAS  Google Scholar 

  • Haydar, J., Aziz, A., & Ahmad, M. S. (2007). Biological treatment of tannery wastewater using activated sludge process. Pakistan Journal of Engineering and Applied Science, 1, 61–66.

    Google Scholar 

  • Hossain, M. N., Islam, M. D., Rahaman, A., Roy, A., & Matin, M. A. (2019). Treatment of tannery effluent using a bio-adsorbent. In Proceedings on International Conference on Disaster Risk Management (pp. 214–217).

    Google Scholar 

  • Hossain, et al. (2012). Comparative study of coir pith and cowdung on growth and yield of summer tomato (Vol. 35, pp. 47–51). Bulletein Industrial Tropical Agricultural Kyushu University. https://www.researchgate.net/publication/319183387_Comparative_study_of_coir_pith_and_cowdung_on_growth_and_yield_of_summer_tomato

    Google Scholar 

  • Hussain, F., Malik, S. A., Athar, M., Bashir, N., Younis, U., & Mahmood, S. (2010). Effect of tannery effluents on seed germination and growth of two sunflower cultivars. African Journal of Biotechnology, 9(32), 5113–5120. http://www.academicjournals.org/AJB

    CAS  Google Scholar 

  • Irawati, W., Timothy, M., Soentoro, S. E., Pinontoan, R., Yuwono, T., & Lindarto, V. (2022). Enterobacter hormaechei KIMS8 and Enterobacter cloacae KIMS10 isolated from Kapuas River, Kalimantan, Indonesia as indigenous multi-resistant bacteria to copper and dyes. Biodiversitas, 23(12), 6661–6668. https://doi.org/10.13057/biodiv/d231265

    Article  Google Scholar 

  • Jagaba, A. H., Kutty, S. R. M., Hayder, G., Baloo, L., Ghaleb, A. A. S., Lawal, I. M., Abubakar, S., Al-dhawi, B. N. S., Almahbashi, N. M. Y., & Umaru. (2021). Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Engineering Journal, 12, 57–64. https://doi.org/10.1016/j.asej.2020.06.016

    Article  Google Scholar 

  • Jahan, M., Akhtar, N., Khan, N., Roy, C., Islam, R., & Nurunnabi, M. (2015). Characterization of tannery wastewater and its treatment by aquatic macrophytes and algae. Bangladesh Journal of Scientific and Industrial Research, 49(4), 233–242. https://doi.org/10.3329/bjsir.v49i4.22626

    Article  Google Scholar 

  • Jenifer, G., & Malliga, P. (2023). Analysis of physicochemical parameters of tannery effluent treated with coir pith and Nava Rasa Karaisal and study of toxicity on plants. Agricultural Research Journal, 60(2), 309–317.

    Article  Google Scholar 

  • Jenny, S., & Malliga, P. (2020). Biodegradation of tannery effluent and its impact on seed germination of Oryza sativa. Holistic Approach Environment, 3, 73–77. https://casopis.hrcpo.com/volume-10-issue-3-sivakumar-et-al/

    Google Scholar 

  • Joothi, P. (2015). Scanning electron microscopic analysis of coir pith after subjected to different treatments. Recent Trends in Physical Chemistry: An International Journal, 2, 1–3.

    Google Scholar 

  • Josepine, A. J. J., Jenifer, G., & Malliga, P. (2020). Treatment of tannery effluent using physical (coir pith) and biological consortium (Nava Rasa Karaisal) methods to characterize as basal fertilizer. Journal of Global Resources, 06(02), 18–25. https://doi.org/10.46587/jgr.2020.v06i02.003

    Article  Google Scholar 

  • Kalaibharathi, S., Sowmya, R., & Malliga, P. (2019). Germination study on Vigna radiata L. seeds using tannery effluent treated with coir pith and Nava Rasa Karaisal. Chemical science review and letters, 8(30), 210–215.

    CAS  Google Scholar 

  • Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health Pollution, 9, 191–203. https://doi.org/10.5696/2156-9614-9.24.191203

    Article  Google Scholar 

  • Kumar, S., & Ganesh, R. (2012). Effect of different bio-composting techniques on physico-chemical and biological changes in coir pith. International Journal of Recent Science, 3(11), 914–918. http://www.recentscientific.com

    Google Scholar 

  • Kumaran, S., Sundaramanickam, A., & Subramanian, B. (2011). Adsorption studies on heavy metals by isolated cyanobacterial strain (Nostoc sp.) from Uppanar Estuarine Water, Southeast Coast of INDIA. Journal of Applied Sciences Research, 7, 1609–1615.

    Google Scholar 

  • Lakshmi, K., & Malliga, P. (2014). Treatment of tannery effluent using cyanobacterium (Lyngbya Sp.) with coir pith. International. Journal of Scientific Research, 3(9), 23–27.

    Google Scholar 

  • Leghouchi, E., Laib, E., & Guerbet, M. (2009). Evaluation of chromium contamination in water, sediment and vegetation caused by the tannery of Jijel (Algeria): A case study. Environmental Monitoring and Assessment, 153(1–4), 111–117. https://doi.org/10.1007/s10661-008-0341-3

    Article  CAS  Google Scholar 

  • Li, Y., Lin, J., Huang, Y., et al. (2020). Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant Soil, 448, 439–453. https://doi.org/10.1007/s11104-020-04447-x

    Article  CAS  Google Scholar 

  • Llanes, A., Reinoso, H., & Luna, V. (2005). Germination and early growth of Prosopis strombulifera seedlings in different saline solutions. World Journal of Agricultural Sciences, 1(2), 120–128.

    Google Scholar 

  • Malaiskiene, J., Kizinievic, O., & Kizinievic, V. (2019). A study on tannery sludge as a raw material for cement mortar. Materials, 12(9). https://doi.org/10.3390/ma12091562

  • Mondal, N., Saxena, V., & Singh, V. (2005). Impact of pollution due to tanneries on groundwater regime. Current Science, 8(12), 1988–1994. https://www.jstor.org/stable/24110631

  • Muthukaruppan, S., & Parthiban, P. (2018). A study on the physicochemical characteristics of tannery effluents collected from Chennai. International Research Journal of Engineering and Technology, 5, 24–28. https://www.irjet.net/archives/V5/i3/IRJET-V5I304.pdf

    Google Scholar 

  • Mythili, K., & Karthikeyan. (2011). Bioremediation of tannery effluent and its impact on seed germination (blackgram and sunflower). Current Botany, 2(8), 40–45. http://currentbotany.org/

    Google Scholar 

  • Nagarajan, M., & Ganesh, K. S. (2015). Toxic effects of chromium on growth of some paddy varieties. International Letters of Natural Sciences, 35, 36–44. https://doi.org/10.18052/www.scipress.com/ilns.35.36

    Article  Google Scholar 

  • Ningshen, L., & Daniel, T. (2013). A study on biodegradation of coir pith using microbial consortium. Journal Of Environmental Science, 5(6), 1–6. https://www.iosrjournals.org/iosr-jestft/papers/vol5-issue6/A0560106.pdf

    Google Scholar 

  • Noorjahan, C. M. (2014). Physicochemical characteristics, identification of fungi and biodegradation of industrial effluent. Journal of Environmental and Earth Science, 4(4), 32–39. https://core.ac.uk/download/pdf/234663309.pdf

  • Nosheen, S., Nawaz, H., & Ur-Rehman, K. (2000). Physico-chemical characterization of effluents of local textile industries of Faisalabad-Pakistan. International Journal of Agriculture and Biology, 2, 232–233. https://www.researchgate.net/publication/285721446_Physicochemical_characterization_of_effluents_of_local_textile_industries_of_Faisalabad-Pakistan

    Google Scholar 

  • Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental, 14, 1504. https://doi.org/10.3390/ijerph14121504

    Article  CAS  Google Scholar 

  • Oljira, T., Muleta, D., & Jida, M. (2018). Potential applications of some indigenous bacteria isolated from polluted areas in the treatment of brewery effluents. Biotechnology Research International, 1–13. https://doi.org/10.1155/2018/9745198

  • Pani, D., & Mishra, P. (2019). Analysis of mechanical properties of coir composites with varied compositions. International Journal of Material Sciences and Technology, 9(1), 1–12. https://www.ripublication.com

  • Patel, K., Munir, D., & Santos, R. M. (2022). Beneficial use of animal hides for abattoir and tannery waste management: A review of unconventional, innovative, and sustainable approaches. Environmental Science and Pollution Research, 29(2), 1807–1823. https://doi.org/10.1007/s11356-021-17101-5

    Article  CAS  Google Scholar 

  • Prabhakaran, N., Patchai Murugan, K., Jothieswari, M., Swarnalatha, S., & Sekaran, G. (2022). Tannery wastewater treatment process to minimize residual organics and generation of primary chemical sludge. International Journal of Environmental Science and Technology, 19(9), 8857–8870. https://doi.org/10.1007/s13762-021-03634-2

    Article  CAS  Google Scholar 

  • Rajkumar, M., Sandhya, S., Prasad, M., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  Google Scholar 

  • Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants—microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Science., 23, 5031. https://doi.org/10.3390/ijms23095031

    Article  CAS  Google Scholar 

  • Ram Bharose, S. P., & Singh, D. (2017). Assessment of physico-chemical properties of tannery waste water and its impact on fresh water quality. International Journal of Current Microbiology and Applied Sciences, 6(4), 1879–1887. https://doi.org/10.20546/ijcmas.2017.604.224

    Article  CAS  Google Scholar 

  • Reghuvaran, A., & Das Ravindranath, A. (2010). Efficacy of biodegraded coir pith for cultivation of medicinal plants. Journal of Scientific & Industrial Research, 69(7), 554–559. https://www.researchgate.net/publication/228493641_Efficacy_of_biodegraded_coir_pith_for_cultivation_of_medicinal_plants

    CAS  Google Scholar 

  • Rigueto, C. V. T., Rosseto, M., Dal Castel, D., Krein, B. E., Ostwald, P., Massuda, L. A., Zanella, B. B., & Dettmer, A. (2020). Alternative uses for tannery wastes: A review of environmental, sustainability, and science. Journal of Leather Science and Engineering, 2, 1–21. https://doi.org/10.1186/s42825-020-00034-z

    Article  Google Scholar 

  • Roy, K., Dey, T. K., Zuha, S. T., Jamal, M., Srivastava, M & Uddin, M. E., (2023). Removal of turbidity from tannery wastewater using graphene oxide‑ferric oxide nanocomposites as an adsorbent. International Journal of Environmental Science and Technology, 20, 5597–5608. https://doi.org/10.1007/s13762-022-04301-w

  • Saimoon Rahman, M., Rayhan Islam, M., Kumer Mondol, O., Shahedur Rahman, M., Sabrin, F., & Salma Zohora, U. (2018). Screening of protease producing bacteria from tannery wastes of leather processing industries at Hazaribag, Bangladesh. Jahangirnagar University Journal of Biological Science, 7(1), 23–34. https://doi.org/10.3329/jujbs.v7i1.37970

    Article  Google Scholar 

  • Sampathkumar, S. (2001). Biomethanation of fleshings and sludge from tannery effluent treatment plants, United Nations Industria Development Organization, 1–105. https://leatherpanel.org/sites/default/files/publicationsattachments/biomethanation_of_fleshings_and_sludge_from_tannery_effluent_treatment_plants.pdf

  • Sangeetha, V., & Sharavanan, P. S. (2018). Use of tannery effluent for irrigation: an evaluative study on the response of Sorghum plants its growth and biochemical characteristics. Journal of Applied and Advanced Research, 135–138. https://doi.org/10.21839/jaar.2018.v3i5.225

  • Sayi, D. S., Mohan, S., & Vinod Kumar, K. (2018). Molecular characterization of a proteolytic bacterium in Panchagavya : An organic fertilizer mixture. Journal of Ayurveda and Integrative Medicine, 9(2), 123–125. https://doi.org/10.1016/j.jaim.2017.04.007

    Article  CAS  Google Scholar 

  • Shanmugapriya, N., & Malliga, P. (2013). Textile effluent treatment using marine cyanobacterium (Oscillatoria Subuliformis), with coir pith and removal of heavy metals. International Journal Science of Research, 2, 484–486. https://doi.org/10.15373/22778179/DEC2013/152

    Article  Google Scholar 

  • Sharma, S., & Malaviya, P. (2016). Bioremediation of tannery wastewater by Aspergillus flavus SPFT2. International Journal of Current Microbiology and Applied Sciences, 5(3), 137–143. https://doi.org/10.20546/ijcmas.2016.503.019

    Article  CAS  Google Scholar 

  • Shrikant, H., & Sekhar, N. (2016). Organic forming-the scientifically redeveloped traditio farming-A Review. International Ayurvedic Medical Journal, 4(12), 3703–3710. https://iamj.in/posts/images/upload/3703_3710.pdf

  • Silva, R. S., Antunes, J. E. L., de Aquino, J. P. A., de Sousa, R. S., de Melo, W. J., & Araujo, A. S. F. (2021). Plant growth-promoting rhizobacteria effect on maize growth and microbial biomass in a chromium-contaminated soil. Bragantia, 80. https://doi.org/10.1590/1678-4499.20200492

  • Sivakumar, J., & Perumal, M. (2018). Development of organic manure in the organic cultivation of tomato: SEM-EDS & GC-MS analysis. International Journal of Research in Advent Technology, 6(12), 3591–3596. http://www.ijrat.org/

    Google Scholar 

  • Subba Rao, N., Gurunadha Rao, V. V. S., & Gupta, C. P. (1998). Groundwater pollution due to discharge of industrial effluents in Venkatapuram area, Visakhapatnam, Andhra Pradesh, India. Environmental Geology, 33(4), 289–294. https://doi.org/10.1007/s002540050248

    Article  CAS  Google Scholar 

  • Sundaram, D., & Malliga, P. (2013). Effect of coirpith based cyanobacterial biofertilizers, jiwamrita and their combination on morphometric parameters of oryza sativa L. Indian Journal of Natural Sciences, 3(18), 1325–1331. https://www.hdl.handle.net/10603/214000

  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120

    Article  CAS  Google Scholar 

  • Tharani, G., Sowmya, R., & Malliga, P. (2019). The effect of culture filtrate of cyanobacterium (Lyngbya sp.) with coir pith on seed germination of Vigna radiata L. International Journal of Life Sciences Research, 7(1), 43–49. https://www.researchpublish.com/

    Google Scholar 

  • Vadivudai, et al. (2015). Biotechnology treatment of tannery effluent using Lyngbya sp. and coir pith and application of treated effluent on seed germination of Vigna radiata L. (Vol. 1, pp. 9–12). Dept . of Marine Biotechnology , Bharathidasan University.

    Google Scholar 

  • Vijayanand, S., & Hemapriya, J. (2014). Biosorption and detoxification of Cr(VI) by Tannery effluent acclimatized halotolerant bacterial strain pv 26. International Journal of Current Microbiology and Applied Science, 3(9), 971–982. http://www.ijcmas.com

    Google Scholar 

  • Vijayaraghavan, G., Sivakumar, T., & Kumar, A. V. (2018). Application of plant based coagulants for waste water treatment. International Journal of Advanced Engineering Research and Studies, 1(1), 88–92.

    Google Scholar 

  • Vijayaraj, A. S., Mohandass, C., & Joshi, D. (2020). Microremediation of tannery wastewater by siderophore producing marine bacteria. Environmental Technology (United Kingdom), 41(27), 3619–3632. https://doi.org/10.1080/09593330.2019.1615995

    Article  CAS  Google Scholar 

  • Wang, P. C., Mori, T., Komori, K., Sasatsu, M., Toda, K., & Ohtake, H. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology, 55(7), 1665–1669. https://doi.org/10.1128/aem.55.7.1665-1669.1989

    Article  CAS  Google Scholar 

  • Yang, S., Zou, H., Cheng, Y., & Tao, E. (2022). Immobilizing chromium in tannery sludge via adding collagen protein waste: An in-depth study on mechanism. Environmental Science and Pollution Research, 29(20), 30337–30347. https://doi.org/10.1007/S11356-021-17919-Z/FIGURES/5

    Article  CAS  Google Scholar 

  • Yasmine, A. O., Malika, C., Abdelatif, A & Aicha, B., (2012). Integration of electro coagulation and adsorption for the treatment of tannery wastewater – The case of an Algerian factory, Rouiba. Procedia Engineering 33, 98 – 101. https://doi.org/10.1016/j.proeng.2012.01.1181

  • Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

    Article  CAS  Google Scholar 

  • Zereen, A., Wahid, A., Khan, Z., & Anwar Sardar, A. (2013). Effect of tannery wastewater on the growth and yield of sunflower (Helianthus annuus L). Bangladesh Journal of Botany, 42(2), 279–285. https://doi.org/10.3329/bjb.v42i2.18030

    Article  Google Scholar 

  • Zhao, C., & Chen, W. (2019). A review for tannery wastewater treatment: Some thoughts under stricter discharge requirements. Environmental Science and Pollution Research, 26(25), 26102–26111. https://doi.org/10.1007/s11356-019-05699-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0), MHRD, New Delhi, and Central Coir Research Institute (Coir Board), Kalavoor, Alleppey, Kerala, India for financial assistance during the period of study.

Funding

The work was funded by Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0), MHRD, New Delhi, and Central Coir Research Institute (Coir Board), Kalavoor, Alleppey, Kerala, India for financial assistance during the period of study.

Author information

Authors and Affiliations

Authors

Contributions

PM designed the research and acquired the funding. GJ and DG participated in the sample collection and conducted the experiments. GJ analyzed the data and wrote the experiment. PM, NG, and NS reviewed and edited the manuscript. SR contributed the funding. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Nallusamy Sivakumar or Malliga Perumal.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, J., Nandhabalan, G., Dhandabani, G. et al. Eco-friendly Degradation of Tannery Sludge with Coir Pith and Nava Rasa Karaisal. Water Air Soil Pollut 234, 717 (2023). https://doi.org/10.1007/s11270-023-06738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06738-2

Keywords

Navigation