Skip to main content
Log in

Effects of Nitrogen and Population Density on the Competition Between Spirodela polyrhiza and Microcystis Sp. Under Laboratory Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microcystis is commonly found in duckweed-based treatment systems, which greatly affects the duckweed growth and performance of the system. In this study, the effects of nitrogen and population density on duckweed and microalgae competition were investigated in terms of their growth sensitivity response to mutual competition under laboratory conditions. A comparatively strong mutual competition between S. polyrhiza and Microcystis sp. was observed at nitrogen concentrations of 5 and 10 mg N/L. At high nitrogen concentrations (40 mg N/L), the growth of Microcystis sp. was remarkably inhibited, which facilitated the S. polyrhiza growth. The magnitude of competitive activity between S. polyrhiza and Microcystis sp. displayed a density-dependent trend. Under 100% duckweed coverage, the intraspecific competition was stronger than the interspecific competition. This study will greatly facilitate the biocontrol of Microcystis sp. development in the duckweed-based water treatment system and improve the system’s efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and the supplementary file.

References

  • Bai, X., & Gu, X. Z. (2018). Effects of planting density on interspecific competition between Phragmitesaustralis and Amaranthusretroflexus under different water conditions. Guihaia, 38(3), 332–340.

    Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287.

    Article  CAS  Google Scholar 

  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195(1), 133–140.

    Article  CAS  Google Scholar 

  • Chen, H., & Wang, Q. (2020). Microalgae-based nitrogen bioremediation. Algal Research, 46, 101775.

    Article  Google Scholar 

  • Duwadi, S. (2020). Allelopathic effects of cyanotoxin Microcystin-LR in greater duckweed, Spirodela polyrhiza (L.) Schleid. Proceedings of Student Research and Creative Inquiry Day, 4.

  • Ennabili, A., Ezzahri, J., & Radoux, M. (2019). Performance of Lemnagibba bioreactor for nitrogen and phosphorus retention, and biomass production in Mediterranean climate. Journal of Environmental Management, 252, 109627.

    Article  CAS  Google Scholar 

  • Gostyńska, J., Pankiewicz, R., Romanowska-Duda, Z., & Messyasz, B. (2022). Overview of allelopathic potential of Lemna minor L. obtained from a shallow eutrophic lake. Molecules, 27(11), 3428.

    Article  Google Scholar 

  • Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4–20.

    Article  Google Scholar 

  • Hashempour, A., Ghasemnezhad, M., Ghazvini, R. F., & Sohani, M. M. (2014). Olive (Olea europaea L.) freezing tolerance related to antioxidant enzymes activity during cold acclimation and non acclimation. Acta Physiologiae Plantarum, 36(12), 3231–3241.

    Article  CAS  Google Scholar 

  • Huang, L., Xi, Y., Wang, X., Xia, M., Han, Y., & Wen, X. (2014). Competitive outcome between the rotifer Brachionuscalyciflorus and the cladoceran Moinamacrocopa depends on algal density but not temperature. In Annales de Limnologie-International Journal of Limnology, 50(2), 109–119. EDP Sciences.

    Article  Google Scholar 

  • Hutner, S. H. (1953). Comparative physiology of heterotrophic growth in high plants. In Loomis, W. E. (Ed.), Growth and Differentiation in Plants. Iowa State College Press, Ames, pp. 417–446.

  • Iqbal, J., & Baig, M. A. (2017). Nitrogen and phosphorous removal from leachate by duckweed (Lemna minor). Environment Protection Engineering, 43(4), 123–134.

    Article  Google Scholar 

  • Ishizawa, H., Tada, M., Kuroda, M., Inoue, D., & Ike, M. (2019). Performance of plant growth-promoting bacerium of duckweed under different kinds of abiotic stress factors. Biocatalysis and Agricultural Biotechnology, 19, 101146.

    Article  Google Scholar 

  • Kim, Y., Son, J., Mo, H. H., Lee, Y. S., & Cho, K. (2018). Modeling the influence of initial density and copper exposure on the interspecific competition of two algal species. Ecological Modelling, 383, 160–170.

    Article  CAS  Google Scholar 

  • Lee, S. J., Jang, M. H., Kim, H. S., Yoon, B. D., & Oh, H. M. (2000). Variation of microcystin content of Microcystis aeruginosa relative to medium N: P ratio and growth stage. Journal of Applied Microbiology, 89(2), 323–329.

    Article  CAS  Google Scholar 

  • Liu, C. G., Dai, Z., & Sun, H. W. (2017). Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress. Journal of Environmental Management, 187, 497–503.

    Article  CAS  Google Scholar 

  • Lu, J., Wang, Z., Xing, W., & Liu, G. H. (2013). Effects of substrate and shading on the growth of two submerged macrophytes. Hydrobiologia, 700(1), 157–167.

    Article  Google Scholar 

  • Lynch, J. P. (2015). Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant Cell and Environment, 38(9), 1775–1784.

    Article  Google Scholar 

  • Mitrovic, S. M., Allis, O., Furey, A., & James, K. J. (2005). Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffiaarrhiza and the filamentous alga Chladophorafracta. Ecotoxicology and Environmental Safety, 61(3), 345–352.

    Article  CAS  Google Scholar 

  • Mohamed, Z. A. (2017). Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management-A review. Limnologica, 63, 122–132.

    Article  CAS  Google Scholar 

  • Narwani, A., Alexandrou, M. A., Oakley, T. H., Carroll, I. T., & Cardinale, B. J. (2013). Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 16, 1373–1381.

    Article  Google Scholar 

  • Ng, Y. S., & Chan, D. J. C. (2017). Wastewater phytoremediation by Salviniamolesta. Journal of Water Process Engineering, 15, 107–115.

    Article  Google Scholar 

  • Nolan, M. P., & Cardinale, B. J. (2019). Species diversity of resident green algae slows the establishment and proliferation of the cyanobacterium Microcystis aeruginosa. Limnologica, 74, 23–27.

    Article  Google Scholar 

  • Parr, L. B., Perkins, R. G., & Mason, C. F. (2002). Reduction in photosynthetic efficiency of Cladophoraglomerata, induced by overlying canopies of Lemna spp. Water Research, 36(7), 1735–1742.

    Article  CAS  Google Scholar 

  • Pawlik-Skowrońska, B., Toporowska, M., & Mazur-Marzec, H. (2018). Toxic oligopeptides in the cyanobacterium Planktothrixagardhii-dominated blooms and their effects on duckweed (Lemnaceae) development. Knowledge & Management of Aquatic Ecosystems, 419, 41.

    Article  Google Scholar 

  • Qiu, X., Yamasaki, Y., Shimasaki, Y., Gunjikake, H., Matsubara, T., Nagasoe, S., Etoh, T., Matsui, S., Honjo, T., & Oshima, Y. (2011). Growth interactions between the raphidophyte Chattonellaantiqua and the dinoflagellate Akashiwosanguinea. Harmful Algae, 11, 81–87.

    Article  Google Scholar 

  • Roijackers, R., Szabó, S., & Scheffer, M. (2004). Experimental analysis of the competition between algae and duckweed. Archiv Fur Hydrobiologie, 160(3), 401–412.

    Article  Google Scholar 

  • Sońta, M., Łozicki, A., Szymańska, M., Sosulski, T., Szara, E., Wąs, A., van Pruissen, G. W. P., & Cornelissen, R. L. (2020). Duckweed from a biorefinery system: Nutrient recovery efficiency and forage value. Energies, 13(20), 5261.

    Article  Google Scholar 

  • Szabó, S., Braun, M., & Borics, G. (1999). Elemental flux between algae and duckweeds (Lemnagibba) during competition. Archiv Fur Hydrobiologie, 146, 355–367.

    Article  Google Scholar 

  • Szabó, S., Roijackers, R., Scheffer, M., & Borics, G. (2005). The strength of limiting factors for duckweed during algal competition. Archiv Fur Hydrobiologie, 164(1), 127–140.

    Article  Google Scholar 

  • Tazart, Z., Manganelli, M., Scardala, S., Buratti, F. M., Di Gregorio, F. N., Douma, M., Mouhri, K., Testai, E., & Loudiki, M. (2021). Remediation strategies to control toxic cyanobacterial blooms: Effects of macrophyte aqueous extracts on Microcystis aeruginosa (growth, toxin production and oxidative stress response) and on bacterial ectoenzymatic activities. Microorganisms, 9(8), 1782.

    Article  CAS  Google Scholar 

  • Walsh, É., Coughlan, N. E., O’Brien, S., Jansen, M. A., & Kuehnhold, H. (2021). Density dependence influences the efficacy of wastewater remediation by Lemna minor. Plants, 10(7), 1366.

    Article  CAS  Google Scholar 

  • Wu, X., Wu, H., Ye, J., & Zhong, B. (2015). Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environmental Science and Pollution Research, 22(23), 18994–19001.

    Article  CAS  Google Scholar 

  • Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Gokare, R. A., & Ambati, R. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2), 393.

    Article  CAS  Google Scholar 

  • Yang, X. J., Hang, S. Q., Tang, W. Y., Yan, S. H., & Zhou, Q. (2016). Physiological characteristics and cell structure of Microcystis aeruginosa and microcystin release and reduction in Eichhorniacrassipes grown water. Jiangsu Journal of Agricultural Sciences, 32(2), 376–382.

    Google Scholar 

  • Zepernick, B. N., Gann, E. R., Martin, R. M., Pound, H. L., Krausfeldt, L. E., Chaffin, J. D., & Wilhelm, S. W. (2021). Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilariacrotonensis and natural diatoms in Lake Erie. Frontiers in Microbiology, 12, 598736.

    Article  Google Scholar 

  • Zhang, J., Cui, S., Li, J., Wei, J., & Kirkham, M. B. (1995). Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiology and Biochemistry, 33(5), 567–575.

    CAS  Google Scholar 

  • Zhang, P., Zhai, C., Wang, X., Liu, C., Jiang, J., & Xue, Y. (2013). Growth competition between Microcystis aeruginosa and Quadrigulachodatii under controlled conditions. Journal of Applied Phycology, 25, 555–565.

    Article  CAS  Google Scholar 

  • Zhou, Y., Kishchenko, O., Stepanenko, A., Chen, G., Wang, W., Zhou, J., Pan, C., & Borisjuk, N. (2021). The dynamics of NO3 and NH4+ uptake in duckweed are coordinated with the expression of major nitrogen assimilation genes. Plants, 11(1), 11.

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31700108, 32071521), the Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province (BK20220030), the Senior Talent Scientific Research Initial Funding Project of Jiangsu University (17JDG017), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment.

Author information

Authors and Affiliations

Authors

Contributions

Daolin Du and Yan Li acquired the project and provided the funding. Yan Li conceived the idea, designed and supervised the experiment, and wrote the manuscript; Hui Zhang, Zongyan Huang, and Fan Zhang conducted the experiment and analyzed the data. Jieyu Zhao and Shanwei Li revised the manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, H., Huang, Z. et al. Effects of Nitrogen and Population Density on the Competition Between Spirodela polyrhiza and Microcystis Sp. Under Laboratory Conditions. Water Air Soil Pollut 234, 661 (2023). https://doi.org/10.1007/s11270-023-06665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06665-2

Keywords

Navigation