Skip to main content

Advertisement

Log in

Estimating Photosynthetically Active Euphotic Layer in Major Lakes of Kumaun Region Using Secchi Depth

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The rate of attenuation of sun rays in water is much faster than in the atmosphere. This rate of attenuation also varies in different water bodies due to n number of factors. Therefore, transparency is a significant environmental factor for a given water body. The thickness of illuminated layer of water is called euphotic layer or Zeuph. It represents the layer of water that has 1% of surface irradiance. Zeuph determines the rate of photosynthesis, occurrence of phytoplankton, and zooplankton. The conversion of sus’s energy into biomass takes place in this layer. This energy then gets transferred to the lower aphotic zone of the water body. Therefore, modelling of this layer holds great environmental significance. Various methods of remote sensing have come into usage as practical ones for the inaccessible or extensively large areas. Still the first-hand field surveys have been proven most accurate methods. Thus, in the present study, an attempt was made to use first-hand Secchi depth data for modelling Zeuph using Secchi disk of four major lakes of Kumaun region naming Nainital, Bhimtal, Sattal, and Naukuchiyatal. Volume of Zeuph of each of the candidate lakes in relation to the lake’s total volume is also estimated in order to estimate which lake has most photosynthetically active layer and it was found that Sattal is most active lake in terms of photosynthesis with roughly 10% volume as Zeuph while Bhimtal is found least active in this regard. The present study is considered as a novel study because first time this methodology has been applied to identified photosynthetically active euphotic layer in aforementioned lakes. An attempt is also made to examine the relationship between secchi depth and distance from the lake bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request (skajimali@myamu.ac.in/skajimali.saa@gmail.com).

References

  • Chauhan, A., Fortenberry, G. Z., Lewis, D. E., & Williams, H. N. (2009). Increased diversity of predacious Bdellovibrio-like organisms (BLOs) as a function of eutrophication in Kumaon Lakes of India. Current Microbiology, 59, 1–8.

    Article  CAS  Google Scholar 

  • Choudhary, P., Routh, J., & Chakrapani, G. J. (2009). An environmental record of changes in sedimentary organic matter from Lake Sattal in Kumaun Himalayas. India. Science of the total environment, 407(8), 2783–2795.

    Article  CAS  Google Scholar 

  • Choudhary, P., Routh, J., & Chakrapani, G. J. (2010). Organic geochemical record of increased productivity in Lake Naukuchiyatal, Kumaun Himalayas. India. Environmental Earth Sciences, 60(4), 837–843.

    Article  CAS  Google Scholar 

  • Choudhary, P., Routh, J., & Chakrapani, G. J. (2013). A 100-year record of changes in organic matter characteristics and productivity in Lake Bhimtal in the Kumaon Himalaya, NW India. Journal of Paleolimnology, 49(2), 129–143.

    Article  Google Scholar 

  • Dahdouh-Guebas, F., Coppejans, E., & Van Speybroeck, D. (1999). Remote sensing and zonation of seagrasses and algae along the Kenyan coast. Hydrobiologia, 400, 63–73.

    Article  Google Scholar 

  • Das, B. K. (2005). Environmental pollution impact on water and sediments of Kumaun lakes, Lesser Himalaya, India: a comparative study. Environmental Geology, 49, 230–239.

    Article  CAS  Google Scholar 

  • Du, J., & Olhoff, N. (2004). Topological optimization of continuum structures with design-dependent surface loading–Part I: new computational approach for 2D problems. Structural and Multidisciplinary Optimization, 27, 151–165.

    Article  Google Scholar 

  • Gallegos, C. L., Werdell, P. J., & McClain, C. R. (2011). Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research, Oceans, 116(C7), 1–19. https://doi.org/10.1029/2011JC007160.

  • Golubkov, M., & Golubkov, S. (2023). Photosynthetically Active Radiation, Attenuation Coefficient, Depth of the Euphotic Zone, and Water Turbidity in the Neva Estuary: Relationship with Environmental Factors. Estuaries and Coasts 46(3), 630–644.

  • Gomes, A. C., Alcântara, E., Rodrigues, T., & Bernardo, N. (2020). Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water. Ecological Indicators, 110, 105848.

    Article  CAS  Google Scholar 

  • Gupta, R., Bhagat, P., Josh, M., Inaotombi, S., & Gupta, P. K. (2010). Heavy metal pollution status of Lake Nainital, Uttarakhand. Indian Journal of Scientific Research, 1(1), 15–19.

    CAS  Google Scholar 

  • Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K. M., Miettinen, H., et al. (2015). Effects of water clarity on lake stratification and lake-atmosphere heat exchange. Journal of Geophysical Research-Atmospheres, 120(15), 7412–7428.

    Article  Google Scholar 

  • Henríquez, L. A., Daneri, G., Munoz, C. A., Montero, P., Veas, R., & Palma, A. T. (2007). Primary production and phytoplanktonic biomass in shallow marine environments of central Chile: effect of coastal geomorphology. Estuarine, Coastal and Shelf Science, 73(1-2), 137–147.

    Article  Google Scholar 

  • Herbreteau, V., Révillion, C., & Trimaille, E. (2018). GeoHealth and QuickOSM, two QGIS plugins for health applications. QGIS and Generic Tools, 1, 257–286.

    Article  Google Scholar 

  • Hill, P. R., Kumar, A., Temimi, M., & Bull, D. R. (2020). HABNet: Machine learning, remote sensing-based detection of harmful algal blooms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3229–3239.

    Article  Google Scholar 

  • Hojerslev, N. K. (1986). Visibility of the sea with special reference to the Secchi disc. In Ocean Optics VIII, Vol. 637 (pp. 294–307). SPIE. https://doi.org/10.1117/12.964245.

  • Inaotombi, S., & Gupta, P. K. (2014). Water quality of a Central Himalayan Lake, Lake Sattal, Uttarakhand. Journal of Ecophysiology and Occupational Health 14(1-2), 83–102. https://doi.org/10.15512/joeoh%2F2014%2Fv14i1-2%2F50748.

  • Inaotombi, S., & Sarma, D. (2021). Factors influencing distribution patterns of cyanobacteria in an upland lake of the Kumaun Himalayas, India. Archives of Environmental & Occupational Health, 76(3), 123–133.

    Article  Google Scholar 

  • Jain, C. K., Malik, D. S., & Yadav, R. (2007). Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environmental Monitoring and Assessment, 130, 129–139.

    Article  CAS  Google Scholar 

  • Jenkins, W. J. (1982). Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature, 300(5889), 246–248.

    Article  CAS  Google Scholar 

  • Jenkins, W. J., & Goldman, J. C. (1985). Seasonal oxygen cycling and primary production in the Sargasso Sea. Journal of Marine Research, 43(2), 465–491.

    Article  CAS  Google Scholar 

  • Jesus, B., Mendes, C. R., Brotas, V., & Paterson, D. M. (2006). Effect of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements. Journal of Experimental Marine Biology and Ecology, 332(1), 60–74.

    Article  Google Scholar 

  • Jia, T., Zhang, X., & Dong, R. (2019). Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on google earth engine: A case study in Taihu Lake. Remote Sensing, 11(19), 2269.

    Article  Google Scholar 

  • Joshi, G. K., Kumar, S., Tripathi, B. N., & Sharma, V. (2006). Production of alkaline lipase by Corynebacterium paurometabolum, MTCC 6841 isolated from Lake Naukuchiatal, Uttaranchal State, India. Current Microbiology, 52, 354–358.

    Article  CAS  Google Scholar 

  • Khanna, D. R., Bhutiani, R., & Chandra, K. S. (2009). Effect of the euphotic depth and mixing depth on phytoplanktonic growth mechanism. International Journal of Environmental Research, 3(2), 223–228.

    CAS  Google Scholar 

  • Kirk, J. T. O. (1977). Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal south-eastern Australian waters. Australian Journal of Marine and Freshwater Research, 28, 9–21.

    Article  Google Scholar 

  • Kirk, J. T. O. (2010). Light and photosynthesis in aquatic ecosystems (3rd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139168212.

  • Kratzer, S., Håkansson, B., & Sahlin, C. (2003). Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 32(8), 577–585. https://www.jstor.org/stable/4315443.

  • Laws, E. A. (2000). Aquatic pollution: an introductory text. John Wiley & Sons. https://books.google.co.in/books/about/Aquatic_Pollution.html?id=V5D2DQAAQBAJ&redir_esc=y. Accessed 9 Jan 2023.

  • Lee, Z., Shang, S., Qi, L., Yan, J., & Lin, G. (2016). A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sensing of Environment, 177, 101–106.

    Article  Google Scholar 

  • Li, L., Stramski, D., & Darecki, M. (2018). Characterization of the light field and apparent optical properties in the ocean euphotic layer based on hyperspectral measurements of irradiance quartet. Applied Sciences, 8(12), 2677.

    Article  CAS  Google Scholar 

  • Liu, X., Lee, Z., Zhang, Y., Lin, J., Shi, K., Zhou, Y., et al. (2019). Remote sensing of secchi depth in highly turbid lake waters and its application with MERIS data. Remote Sensing, 11(19), 2226.

    Article  Google Scholar 

  • Lorenzen, C. J. (1972). Extinction of light in the ocean by phytoplankton. ICES Journal of Marine Science, 34(2), 262–267.

    Article  Google Scholar 

  • Lozier, M. S., Dave, A. C., Palter, J. B., Gerber, L. M., & Barber, R. T. (2011). On the relationship between stratification and primary productivity in the North Atlantic. Geophysical Research Letters, 38(18), 1–6. https://doi.org/10.1029/2011GL049414.

  • Luhtala, H., & Tolvanen, H. (2013a). Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters: an empirical study from the Baltic Sea. ISPRS International Journal of Geo-Information, 2(4), 1153–1168.

    Article  Google Scholar 

  • Luhtala, H., & Tolvanen, H. (2013b). Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters: An empirical study from the Baltic Sea. ISPRS International Journal of Geo-Information, 2(4), 1153–1168.

    Article  Google Scholar 

  • Majozi, N. P., Salama, M. S., Bernard, S., Harper, D. M., & Habte, M. G. (2014). Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data. Remote Sensing of Environment, 148, 178–189.

    Article  Google Scholar 

  • Malarvizhi, K., Kumar, S. V., & Porchelvan, P. (2016). Use of high resolution Google Earth satellite imagery in landuse map preparation for urban related applications. Procedia Technology, 24, 1835–1842.

    Article  Google Scholar 

  • Morel, A., & Berthon, J. F. (1989). Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnology and Oceanography, 34(8), 1545–1562.

    Article  CAS  Google Scholar 

  • Obata, A., Ishizaka, J., & Endoh, M. (1996). Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. Journal of Geophysical Research, Oceans, 101(C9), 20657–20667.

    Article  Google Scholar 

  • Orio, M., Pantazis, D. A., & Neese, F. (2009). Density functional theory. Photosynthesis Research, 102, 443–453.

    Article  CAS  Google Scholar 

  • Pant, M. C., Sharma, P. C., & Sharma, A. P. (1985). Physico-chemical Limnology of Lake Naini Tal, Kumaun, Himalaya (UP), India. Acta Hydrochimica et Hydrobiologica, 13(3), 331–350.

    Article  CAS  Google Scholar 

  • Panwar, S., & Malik, D. S. (2016). Zooplankton diversity, species richness and their distribution pattern in Bhimtal Lake of Kumaun region, (Uttarakhand). Hydrology Current Research, 7(1), 219.

    Google Scholar 

  • Pelizzetti, E., & Calza, P. (2002). Photochemical processes in the euphotic zone of sea water: Progress and problems. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (Eds.) Chemistry of Marine Water and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04935-8_3.

  • Rodriguez, J., Tintoré, J., Allen, J. T., Blanco, J. M., Gomis, D., Reul, A., et al. (2001). Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature, 410(6826), 360–363.

    Article  CAS  Google Scholar 

  • Saino, T., & Hattori, A. (1980). 15 N natural abundance in oceanic suspended particulate matter. Nature, 283, 752–754.

    Article  CAS  Google Scholar 

  • Sárközy, F. (1999). GIS functions-interpolation. Periodica Polytechnica. Civil Engineering, 43(1), 63–87.

    Google Scholar 

  • Sarmento, H., Isumbisho, M., & Descy, J. P. (2006). Phytoplankton ecology of Lake Kivu (eastern Africa). Journal of Plankton Research, 28(9), 815–829.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1971). Light, temperature, and oxygen regimes of selected lakes in the Experimental Lakes Area, northwestern Ontario. Journal of the Fisheries Board of Canada, 28(2), 157–169.

    Article  Google Scholar 

  • Schröter, M., Crouzat, E., Hölting, L., Massenberg, J., Rode, J., Hanisch, M., et al. (2021). Assumptions in ecosystem service assessments: Increasing transparency for conservation. Ambio, 50(2), 289–300.

    Article  Google Scholar 

  • Scott, B. D. (1978). Phytoplankton distribution and light attenuation in Port Hacking estuary. Australian Journal of Marine & Freshwater Research, 29, 31–44.

    Article  CAS  Google Scholar 

  • Sharma, P. C., & Pant, M. C. (1984). Abundance and community structure of limnetic zooplankters in Kumaun lakes, India. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 69(1), 91–109.

    Article  Google Scholar 

  • Siegel, H., Gerth, M., & Beckert, M. (1994). Variation of optical properties in the Baltic Sea and algorithms for the application of remote sensing data. In Ocean Optics XII (Vol. 2258, pp. 894–905). SPIE. https://doi.org/10.1117/12.190043.

  • Smith, E. M., & Kemp, W. M. (1995). Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Marine ecology progress series. Oldendorf, 116(1), 217–231.

    Article  Google Scholar 

  • Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences, 68, 1–15.

  • Teubner, K., Teubner, I., Pall, K., Kabas, W., Tolotti, M., Ofenböck, T., & Dokulil, M. T. (2020). New emphasis on water transparency as socio-ecological indicator for urban water: bridging ecosystem service supply and sustainable ecosystem health. Frontiers in Environmental Science, 8, 573724.

    Article  Google Scholar 

  • Tripathi, N. K., Venkobachar, C., Singh, R. K., & Singh, S. P. (1998). Monitoring the pollution of river Ganga by tanneries using the multiband ground truth radiometer. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 204–216.

    Article  Google Scholar 

  • UNESCO. (1966). Report of the second group of experts on photosynthetic radiant energy. Unesco Technical Papers in Marine Science. No. 5. https://scor-int.org/group/15/. Accessed 20 Jan 2023.

  • Wang, M. H., Nim, C. J., Son, S., & Shi, W. (2012). Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. Water Research, 46, 5410–5422.

    Article  CAS  Google Scholar 

  • Webster, T., McGuigan, K., Crowell, N., Collins, K., & MacDonald, C. (2016). Optimization of data collection and refinement of post-processing techniques for Maritime Canada's first shallow water topographic-bathymetric lidar survey. Journal of Coastal Research, 76(10076), 31–43.

    Article  Google Scholar 

  • Wong, Y. J., Shimizu, Y., He, K., & Nik Sulaiman, N. M. (2020). Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environmental Monitoring and Assessment, 192, 1–16.

    Article  Google Scholar 

  • Wong, Y. J., Shimizu, Y., Kamiya, A., Maneechot, L., Bharambe, K. P., Fong, C. S., & Nik Sulaiman, N. M. (2021). Application of artificial intelligence methods for monsoonal river classification in Selangor river basin. Environmental Monitoring and Assessment, 193(7), 438.

    Article  CAS  Google Scholar 

  • Zepp, R. G., & Cline, D. M. (1977). Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 11(4), 359–366.

    Article  CAS  Google Scholar 

  • Zhang, Y., Qin, B., Hu, W., Wang, S., Chen, Y., & Chen, W. (2006). Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance. Science in China Series D, 49(4), 431–442.

    Article  Google Scholar 

  • Zhou, T., Wang, Y., Tang, J., & Dai, Y. (2013). Bacterial communities in Chinese grass carp (Ctenopharyngodon idellus) farming ponds. Aquaculture Research, 45(1), 138–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude and thankfully acknowledge the anonymous reviewers and the Editor for their productive time, valuable comments and suggestions for improving the overall quality of our manuscript. The authors also wish to thank the Department of Geography, Faculty of Sciences, Aligarh Muslim University, Aligarh and the Department of Science & Technology, Govt. of India for providing support in data analysis and visualization through available software at Geospatial Lab under DST-FIST Program.

Author information

Authors and Affiliations

Authors

Contributions

ZK and SAA: Conceptualization, Writing- original draft, Software, Formal analysis, Visualization. MM, EM, and FP: Study design, Data preparation, Formal analysis, Visualization. NB and MYJB: Formal analysis; Writing- original draft, Visualization. SKS and AA: Supervision, Writing, Review, Editing.

Corresponding author

Correspondence to Sk Ajim Ali.

Ethics declarations

Ethics Approval and Consent to Participate

The present study ensures that objectivity and transparency are followed in this research along with acknowledged principles of ethical and professional behaviour. The named authors confirm that the consent to participate is not applicable.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Scopus Author ID: 57208693930

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z., Ali, S.A., Mohsin, M. et al. Estimating Photosynthetically Active Euphotic Layer in Major Lakes of Kumaun Region Using Secchi Depth. Water Air Soil Pollut 234, 597 (2023). https://doi.org/10.1007/s11270-023-06612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06612-1

Keywords

Navigation