Skip to main content

Advertisement

Log in

Investigation on the Source of Soil Salinity in Agricultural Land Adjacent to Chamo Lake, Ethiopia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The soil salinization causing land degradation and decline in soil fertility is becoming a potential problem in some regions of Ethiopia. Finding source of salinization could help devise appropriate measures for solving the problem. The present study was taken up to investigate the source of salinity in an area (1229 ha) lying between the Sile and Elgo rivers near Chamo Lake. The area has remained uncultivated since 2012 and is showing signs of salinity in the form of white deposit on the soil surface. Surface water, groundwater, and soil samples were obtained based on the research area’s proximity to potential influencing sources of salinity and fertility decline during the dry and wet seasons. Groundwater samples were taken from seven piezometric stations and eight hand-dug wells while surface water samples were taken from two river sites and four wetland points. The soil samples were taken from four locations. The laboratory results of the groundwater samples in piper diagrams revealed a salt dominance of Ca+2, Mg+2, and Na+ with SO4−2 and Cl. According to the Arc GIS 10.4.1 flow direction analysis tool, the flow direction of the regional water table towards the lake was northwest to south and southeast. The correlation analysis in Python revealed that Na+ and K+, as well as SO4−2 and Cl, were the most common salt types. Gibbs’ theories typically highlighted continuous rock weathering as a significant source of salts in the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Akoachere, R. A., Yaya, O. O., Egbe, S. E., Eyong, T. A., Nji, B. N., & Tambe, D. B. (2019). GIS-hydrogeochemical model of the Yaoundé Fractured Rock Aquifer, Cameroon: Aquifer setting, seasonal variations in groundwater-rock interaction and water quality. Journal of Geoscience and Environment Protection, 7, 232–263.

    Article  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and waste water (21st ed.). American Public Health Association.

  • Artiola, J. F., Walworth, J. L., Musil, S. A., & Crimmins, M. A. (2019). Soil and land pollution. In Environmental and Pollution Science (3rd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814719-1.00014-8

    Book  Google Scholar 

  • Asfaw, E., Suryabhagavan, K. V., & Argaw, M. (2018). Soil salinity modelling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(3), 250–258. https://doi.org/10.1016/j.jssas.2016.05.003

    Article  Google Scholar 

  • Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinization process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. Journal of Hydrology, 323(1-4), 178–192.

    Article  Google Scholar 

  • Boughanmi, M., Dridi, L., Hamdi, M., Majdoub, R., & Schäfer, G. (2018). Impact of floodwaters on vertical water fluxes in the deep vadose zone of an alluvial aquifer in a semi-arid region. Hydrological Sciences Journal, 63(1), 136–153. https://doi.org/10.1080/02626667.2017.1410281

    Article  CAS  Google Scholar 

  • Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: A threat to global food security. Agronomy Journal, 108, 2189–2200.

    Article  CAS  Google Scholar 

  • Callow, J. N., Hipsey, M. R., & Vogwill, R. I. J. (2020). Surface water as a cause of land degradation from dryland salinity. Hydrology and Earth System Sciences, 24, 717–734. https://doi.org/10.5194/hess-24-717-2020

    Article  Google Scholar 

  • Chen, Y., Li, W., Xu, C., Ye, Z., & Chen, Y. (2015). Desert riparian vegetation and groundwater in the lower reaches of the Tarim river basin. Environmental Earth Sciences, 73, 547–558.

    Article  Google Scholar 

  • Chenchen, W., Li, F., Yang, P., Ren, S., Wang, S., Yu, W., Ziang, X., Yao, X., Wei, R., & Zhang, Y. (2019). Effects of irrigation water salinity on soil properties, N2O emission and yield of spring maize under mulched drip irrigation. Water, 11, 1548. https://doi.org/10.3390/w11081548

    Article  CAS  Google Scholar 

  • Cui, G., Lu, Y., Zheng, C., Liu, Z., & Sai, J. (2019). Relationship between soil salinization and groundwater hydration in Yaoba Oasis, Northwest China. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010175

  • Custodio, E. (2010). Coastal aquifers of Europe: An overview. Hydrogeology Journal, 18, 269–280.

    Article  CAS  Google Scholar 

  • Daba, A. W., & Qureshi, A. S. (2021). Review of soil salinity and sodicity challenges to crop production in the lowland irrigated areas of Ethiopia and its management strategies. Land, 10(12), 1377. https://doi.org/10.3390/land10121377

    Article  Google Scholar 

  • Daniel, H. (2008). Soil fertility and plant nutrition — Soil in the environment. Elsevier Publishers. https://doi.org/10.1016/C2009-0-00041-5

    Book  Google Scholar 

  • Devkota, K. P., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated dry lands. Agricultural Systems, 198, 103390. https://doi.org/10.1016/j.agsy.2022.103390

    Article  Google Scholar 

  • FAO. (1994). Water quality for agriculture, irrigation and drainage. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO, Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Feng, W., Qian, H., Panpan, X., & Hou, K. (2020). Hydrochemical characteristic of groundwater and its impact on crop yields in the Baojixia irrigation area, China. Water, 12, 1443. https://doi.org/10.3390/w12051443

    Article  CAS  Google Scholar 

  • Fiorentini, D., Cappadone, C., Farruggia, G., & Prata, C. (2021). Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients, 13, 1136. https://doi.org/10.3390/nu13041136

    Article  CAS  Google Scholar 

  • Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A., & Schwenk, J. (2015). The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resources Research, 51, 6649–6671.

    Article  Google Scholar 

  • Gebremeskel, G., Gebremicael, T. G., Kifle, M., Meresa, E., Gebremedhin, T., & Girmay, A. (2018). Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis. Agricultural Water Management, 206, 147–157. https://doi.org/10.1016/j.agwat.2018.05.007

    Article  Google Scholar 

  • Geological Survey of Ethiopia (GSE) (1972). ArbaMinch Zuria geological pattern, .

    Google Scholar 

  • Ghazaryan, K., & Chen, Y. (2016). Hydrochemical assessment of surface water for irrigation purposes and its influence on soil salinity in Tikanlik oasis, China. Environmental Earth Sciences, 75(5), 1–15. https://doi.org/10.1007/s12665-016-5287-0

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gu, A., & Eastoe, C. J. (2021). The origins of sulfate in Cenozoic non-marine evaporites in the basin and-range province, Southwestern North America. Geosciences, 11, 455. https://doi.org/10.3390/geosciences11110455

    Article  CAS  Google Scholar 

  • Hack, R., Price, D., & Rengers, N. (2003). A new approach to rock slope stability — A probability classification (SSPC). Bulletin of Engineering Geology and the Environment, 62, 167–184. https://doi.org/10.1007/s10064-002-0155-4

    Article  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8, 31. https://doi.org/10.3390/agronomy8030031

    Article  CAS  Google Scholar 

  • Hassani, A., Azapagic, A., & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12, 6663. https://doi.org/10.1038/s41467-021-26907-3

  • Hill, A. R., & Sadowski, E. K. (2016). Chloride concentrations in wetlands along a rural to urban land use gradient. Wetlands, 36, 73–83. https://doi.org/10.1007/s13157-015-0717-4

    Article  Google Scholar 

  • Hussain, N., Ali Ai-Rawahy, S., Rabee, J., & Ai-Amri, M. (2006). Causes, origin, genesis and extent of soil salinity in the sultanate of Oman. The Journal of Agricultural Science, 43, 1–2.

    Google Scholar 

  • Jin, L., Whitehead, P. G., Bussi, G., Hirpa, F., Taye, M. T., Abebe, Y., & Charles, K. (2021). Natural and anthropogenic sources of salinity in the Awash River and Lake Beseka (Ethiopia): Modelling impacts of climate change and lake-river interactions. Journal of Hydrology: Regional Studies, 36, 100865. https://doi.org/10.1016/j.ejrh.2021.100865

    Article  Google Scholar 

  • Liu, C., Cui, B., Chao, H., Haiqing, W., & Gao, F. (2021). Effects of mixed irrigation using brackish water with different salinities and reclaimed water on a soil-crop system. Journal of Water Reuse and Desalination, 11(4), 632–648. https://doi.org/10.2166/wrd.2021.043

    Article  CAS  Google Scholar 

  • Loucks, D. P., & van Beek, E. (2017). Water resources planning and management: An overview. In Water Resource Systems Planning and Management. Springer. https://doi.org/10.1007/978-3-319-44234-1_1

    Chapter  Google Scholar 

  • Ma, L., Wang, X., Gao, Z., Youke, W., Nie, Z., & Liu, X. (2019). Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China. Agricultural Water Management, 216, 436–443.

    Article  Google Scholar 

  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3, 30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Mansouri, Z., Leghrieb, Y., Kouadri, S., Al-Ansari, N., Najm, H. M., Mashaan, N. S., Eldirderi, M. M. A., & Khedher, K. M. (2022). Hydro-geochemistry and groundwater quality assessment of Ouargla Basin, South of Algeria. Water, 14, 2441. https://doi.org/10.3390/w14152441

    Article  CAS  Google Scholar 

  • Marandia, A., & Shand, P. (2018). Groundwater chemistry and the Gibbs diagram. Applied Geochemistry, 97, 2009–2012. https://doi.org/10.1016/j.apgeochem.2018.07.009

    Article  CAS  Google Scholar 

  • Masoud, M., El Osta, M., Alqarawy, A., et al. (2022). Evaluation of groundwater quality for agricultural under different conditions using water quality indices, partial least squares regression models, and GIS approaches. Applied Water Science, 12, 244. https://doi.org/10.1007/s13201-022-01770-9

    Article  CAS  Google Scholar 

  • Mastrocicco, M., & Colombani, N. (2021). The issue of groundwater salinization in coastal areas of the Mediterranean region: A review. Water, 13, 90. https://doi.org/10.3390/w13010090

    Article  Google Scholar 

  • Mebrahtu, T. K., Banning, A., Girmay, E. H., et al. (2021). The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia. Hydrogeology Journal, 29, 1239–1260. https://doi.org/10.1007/s10040-020-02288-7

    Article  CAS  Google Scholar 

  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2020). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736.

    Article  Google Scholar 

  • Nachshon, U. (2016). Seepage weathering impacts on erosivity of arid stream banks: A new conceptual model. Geomorphology, 261, 212–221.

    Article  Google Scholar 

  • Nachshon, U. (2018). Cropland soil salinization and associated hydrology: Trends, processes and examples. Water, 10, 1030. https://doi.org/10.3390/w10081030

    Article  CAS  Google Scholar 

  • Newton, P. J., Myers, B. A., & West, D. W. (1991). Reduction in growth and yield of Jerusalem artichoke caused by soil salinity. Irrigation Science, 12, 213–221.

    Article  Google Scholar 

  • Ondrasek, G., & Rengel, Z. (2020). Environmental salinisation processes: Detection, implications & solutions. Science of the Total Environment, 754, 142432.

    Article  Google Scholar 

  • Qureshi Asad, S., Mohammed, M., Daba, A. W., Hailu, B., Belay, G., Tesfaye, A., & Ertebo, T. M. (2019). Improving agricultural productivity on salt-affected soils in Ethiopia: Farmers’ perceptions and proposals. African Journal of Agricultural Research, 14(21), 897–906. https://doi.org/10.5897/AJAR2019.14077

    Article  Google Scholar 

  • Reddythota, D., & Teferi Timotewos, M. (2022). Evaluation of pollution status and detection of the reason for the death of fish in Chamo Lake, Ethiopia. Journal of Environmental and Public Health, 2022, 5859132. https://doi.org/10.1155/2022/5859132

    Article  CAS  Google Scholar 

  • Ren, D., Xu, X., Huang, Q., Huo, Z., Xiong, Y., & Huang, G. (2018). Analyzing the role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions. Water, 10(5), 634. https://doi.org/10.3390/w10050634

    Article  Google Scholar 

  • Rodríguez-Rodríguez, M., Fernández-Ayuso, A., Hayashi, M., & Moral-Martos, F. (2018). Using water temperature, electrical conductivity, and pH to characterize surface–groundwater relations in a shallow ponds system (Doñana National Park, SW Spain). Water, 10, 1406. https://doi.org/10.3390/w10101406

    Article  Google Scholar 

  • Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137, 27–49. https://doi.org/10.1007/s10533-017-0410-1

    Article  CAS  Google Scholar 

  • Saha, S., Reza, A. H. M. S., & Roy, M. K. (2019). Hydro chemical evaluation of groundwater quality of the Tista floodplain, Rangpur, Bangladesh. Applied Water Science, 9, 198.

    Article  CAS  Google Scholar 

  • Sarath Prasanth, S. V., Magesh, N. S., & Jitheshlal, K. V. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2, 165–175. https://doi.org/10.1007/s13201-012-0042-5

    Article  CAS  Google Scholar 

  • Savari, M., Yazdanpanah, M., & Rouzaneh, D. (2022). Factors affecting the implementation of soil conservation practices among Iranian farmers. Scientific Reports, 12, 8396. https://doi.org/10.1038/s41598-022-12541-6

    Article  CAS  Google Scholar 

  • Selemani, J., Zhang, J., Muzuka, A., Njau, K. N., Zhang, G., Mzuza, M., & Maggid, A. (2018). Nutrients’ distribution and their impact on Pangani River Basin’s ecosystem–Tanzania. Environmental Technology, 39, 702–716.

    Article  CAS  Google Scholar 

  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer. https://doi.org/10.1007/978-3-319-96190-3_2

    Chapter  Google Scholar 

  • Sharma, P. D., Adare, K., Girma, A., & Lemma, B. (2016). Response of maize to fertilization on alluvial soil in ArbaMinch, Gamo-Gofa, Southern Ethiopia. International Journal of Agricultural Sciences, 6(9), 1141–1147.

    Google Scholar 

  • Shil, S., Singh, U. K., & Mehta, P. (2019). Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9(7), 1–21. https://doi.org/10.1007/s13201-019-1045-2

    Article  CAS  Google Scholar 

  • Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020b). Water table depthand soil salinization: From pore-scale processes to field-scale responses. Water Resources Research, 56, e2019WR026707. https://doi.org/10.1029/2019WR026707 Received 6 NOV 2019Accepted 17 JAN 2020Accepted article online 20 JAN 2020SHOKRI-KUEHNI ET AL.1of13.

    Article  Google Scholar 

  • Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020a). Water table depth and soil salinization: From pore-scale processes to field-scale responses. Water Resources Research, 56(2), e2019WR026707. https://doi.org/10.1029/2019WR026707

    Article  Google Scholar 

  • Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831

    Article  Google Scholar 

  • Steppuhn, H., Van Genuchten, M. T., & Grieve, C. M. (2005). Root-zone salinity: I. Selecting a product-yield index and response function for crop tolerance. Crop Science, 45, 209–220.

    Google Scholar 

  • Tadesse, T., Sharma, P. D., & Ayele, T. (2022). Effect of the irrigation interval and nitrogen rate on yield and yield components of onion (Allium cepa L.) at Arba Minch, Southern Ethiopia. Advances in Agriculture, 2022, 4655590. https://doi.org/10.1155/2022/4655590

    Article  Google Scholar 

  • Tanji. (1990). In K. K. Tanji (Ed.), Agricultural salinity assessment and management. 1990. American Society of Civil Engineers.

    Google Scholar 

  • Tarkegn, G. B., & Jury, M. R. (2020). Changes in the seasonality of Ethiopian highlands climate and implications for crop growth. Atmosphere, 11, 892. https://doi.org/10.3390/atmos11090892

    Article  Google Scholar 

  • Teffera, F. E., Lemmens, P., Deriemaecker, A., Deckers, J., Bauer, H., Gamo, F. W., Brendonck, L., & Meester, L. D. (2019). Why are Lake Abaya and Lake Chamo so different? A limnological comparison of two neighboring major Ethiopian Rift Valley lakes. Hydrobiologia, 829, 113–124. https://doi.org/10.1007/s10750-018-3707-8

    Article  Google Scholar 

  • Thien, S. J. (1979). A flow diagram for teaching texture-by-feel analysis. Journal of Agronomic Education, 8(1), 54–55.

    Article  Google Scholar 

  • Tuladhar, S., & Iqbal, M. (2020). Investigating the critical role of a wetland in spatial and temporal reduction of environmental contaminants: A case study from Iowa, USA. Wetlands, 40, 101–112. https://doi.org/10.1007/s13157-019-01162-x

    Article  Google Scholar 

  • Vessia, G., & Russo, S. (2017). Classification of lacustrine sediments based on sedimentary components. Biosystems Engineering, 168, 4–13. https://doi.org/10.1016/j.biosystemseng.2017.08.023

    Article  Google Scholar 

  • Wang, Q. J., & Shan, Y. Y. (2015). Review of research development on water and soil regulation with brackish water irrigation. Transactions of the Chinese Society of Agricultural Machinery, 46, 117–126.

    Google Scholar 

  • Yu, G., Wang, J., & Liu, L. (2020). The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. BMC Public Health, 20, 437. https://doi.org/10.1186/s12889-020-08583-y

    Article  CAS  Google Scholar 

  • Zaidi, F. K., Al-Bassam, A. M., Kassem, O. M. K., Alfaifi, H. J., & Alhumidan, S. M. (2017). Factors influencing the major ion chemistry in the Tihama coastal plain of southern Saudi Arabia: Evidences from hydrochemical facies analyses and ionic relationships. Environmental Earth Sciences, 76, 472.

    Article  Google Scholar 

  • Zaman, M., Shahid, S. A., & Heng, L. (2018). Irrigation water quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer. https://doi.org/10.1007/978-3-319-96190-3_5

    Chapter  Google Scholar 

  • Zebire, D. A., Ayele, T., & Ayana, M. (2019). Characterizing soils and the enduring nature of land uses around the Lake Chamo Basin in South-West Ethiopia. Journal of Ecology and Environment, 43(1), 1–32. https://doi.org/10.1186/s41610-019-0104-9

    Article  Google Scholar 

  • Zhang, S., Wei, J., Li, Y., Duan, M., Nwankwegu, A. S., & Norgbey, E. (2021). The influence of seasonal water level fluctuations on the soil nutrients in a typical wetland reserve in Poyang Lake, China. Sustainability, 13, 3846. https://doi.org/10.3390/su13073846

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Faculty of Water Supply & Environmental Engineering, AWTI, Arba Minch University, Ethiopia, for providing laboratory and instruments support to conduct this research work successfully.

Author information

Authors and Affiliations

Authors

Contributions

ALB: conducting a research and investigation process, specifically performing the experiments, or data/evidence collection, collection, analysis of the samples, field work, survey, data collection, Arc GIS mapping.

TK: data curation, statistical analysis of data, review, and editing, Arc GIS mapping.

DR: conceptualization, plan of research work, methodology, data curation, writing—original draft preparation, review and editing, supervision.

GT: data curation, Arc GIS mapping, data collection, review and editing.

Corresponding author

Correspondence to Daniel Reddythota.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 10
figure 10

Geological composition in the study area (source: Geological Survey of Ethiopia, 1972)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassa, A.L., Kasa, T., Reddythota, D. et al. Investigation on the Source of Soil Salinity in Agricultural Land Adjacent to Chamo Lake, Ethiopia. Water Air Soil Pollut 234, 576 (2023). https://doi.org/10.1007/s11270-023-06560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06560-w

Keywords

Navigation