Skip to main content
Log in

Monoculture and Coculture of Sesuvium portulacastrum and Sulla carnosa Under Saline and Non-Saline Conditions: Plant Vigour and Soil Phytodesalination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the possibility of coculture of the two halophytes Sesuvium portulacastrumSulla carnosa under saline and non-saline conditions with a special focus on plant vigour and phytodesalination potential. Plants were grown for 2 months in unperforated pots filled with agricultural soil added or not with 1.5 g NaCl. kg−1. Thereafter, shoots were harvested for growth, water status, and mineral composition. Soil samples were also analysed. Plant productivities and phytodesalination potentials were estimated based on shoot dry weights and sodium contents as well as soil soluble sodium contents. As grown for only 2 months in monoculture, S. carnosa could not desalinate the slightly saline soil, unlike S. portulacastrum, which extracted a quarter of the added sodium quantity. Nevertheless, such a noticeable phytodesalination capacity of S. portulacastrum did not reduce soil salinity and soluble sodium content. S. carnosa growth and productivity were enhanced by both salinity and coculture under non-saline conditions, which can be explained respectively by S. carnosa halophytic behaviour and probably a positive allelopathy exerted by S. portulacastrum. By contrast, a negative allelopathy seems exerted by S. carnosa under both saline and non-saline conditions. Under moderately saline conditions, both halophytes should be grown in monoculture. The stimulatory effect of S. portulacastrum on S. carnosa under non-saline conditions needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas, G., Amjad, M., Saqib, M., Murtaza, B., Asif Naeem, M., Shabbir, A., & Murtaza, G. (2021). Soil sodicity is more detrimental than salinity for quinoa (Chenopodium quinoa Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 207, 59–73. https://doi.org/10.1111/jac.12451

    Article  CAS  Google Scholar 

  • Barcia-Piedras, J. M., Pérez-Romero, J. A., Mateos-Naranjo, E., Camacho, M., & Redondo-Gómez, S. (2019). Effect of prior salt experience on desalination capacity of the halophyte Arthrocnemum macrostachyum. Desalination, 463, 50–54. https://doi.org/10.1016/j.desal.2019.03.006

    Article  CAS  Google Scholar 

  • Ben Amor, N., Jiménez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2007). Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritima. Journal of Integrative Plant Biology, 49(7), 982–992. https://doi.org/10.1111/j.1672-9072.2007.00491.x

    Article  CAS  Google Scholar 

  • Bieberichid, J., Lauerer, M., Drachsler, M., Heinrichs, J., Muller, S., & Feldhaar, H. (2018). Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on cooccurring plants. PLoS ONE, 13, 1–19. https://doi.org/10.1371/journal.pone.0205843

    Article  CAS  Google Scholar 

  • Daba, A. W., & Qureshi, A. S. (2021). Review of soil salinity and sodicity challenges to crop production in the lowland irrigated areas of Ethiopia and its management strategies. Land, 10, 1377. https://doi.org/10.3390/land10121377

    Article  Google Scholar 

  • Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307–319. https://doi.org/10.1093/jxb/erh003

    Article  CAS  Google Scholar 

  • Hassani, A., Azapagic, A., & Shokri, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences USA, 117, 33017–33027. https://doi.org/10.1073/PNAS.2013771117

    Article  CAS  Google Scholar 

  • Horneck, D., Ellsworth, J., Hopkins, B., Sullivan, D., & Stevens, R. (2007). Managing salt-affected soils for crop production. Pac Northwest Ext 21.

  • Jesus, J. M., Danko, A. S., & Fiúza, A. (2015). Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research, 15, 6511–6525. https://doi.org/10.1007/s11356-015-4205-4

    Article  CAS  Google Scholar 

  • Jlassi, A., Zorrig, W., El-Khouni, A., Lakhdar, A., Smaoui, A., Abdelly, C., & Rabhi, M. (2013). Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. International Journal Phytoremediation, 15, 398–404. https://doi.org/10.1080/15226514.2012.716104

    Article  Google Scholar 

  • Kaddour, R., Sellami, N., Chennaoui, H., Nasri, N., & Baatour, O. (2011). Correlation between salt tolerance and genetic diversity between Sulla carnosa and Sulla coronaria. African Journal Biotechnology, 10, 14355–14365. https://doi.org/10.5897/AJB11.1168

    Article  CAS  Google Scholar 

  • Lastiri-Hernández, M. A., Alvarez-Bernal, D., Bermúdez-Torres, K., Cárdenas, G. C., & Ceja-Torres, L. F. (2019). Phytodesalination of a moderately saline soil combined with two inorganic amendments. Bragantia, 78, 579–586. https://doi.org/10.1590/1678-4499.20190031

    Article  CAS  Google Scholar 

  • Maatallah, M., Talbi Zribi, O., Salhi, M., Abdelly, C., & Barhoumi, Z. (2021). Combined effects of salinity and nitrogen levels on some physiological and biochemical aspects at the halophytic forage legume Sulla carnosa. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2021.1960316

    Article  Google Scholar 

  • Nedjimi, B. (2014). Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochemical Systematics and Ecology, 52, 4–13. https://doi.org/10.1016/j.bse.2013.10.007

    Article  CAS  Google Scholar 

  • Nikalje, G. C., Srivastava, A. K., Pandey, G. K., & Suprasanna, P. (2018). Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation & Development, 29, 1081–1095. https://doi.org/10.1002/ldr.2819

    Article  Google Scholar 

  • Panta, S., Flowers, T., Lane, P., Doyle, R., & Haros, G. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006

    Article  Google Scholar 

  • Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of Total Environment, 323, 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012

    Article  CAS  Google Scholar 

  • Qadir, M., Quillérou, E. Z., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295. https://doi.org/10.1111/1477-8947.12054

    Article  Google Scholar 

  • Rabhi, M. (2011). Le phytodessalement: approche biologique de dessalement des sols: Évaluation de la capacité de phytodessalement chez quelques halophytes: photosynthèse et productivité photosynthétique. Éditions Universitaires Européennes (EUE). [In French]

  • Rabhi, M., Atia, A., Abdelly, C., & Smaoui, A. (2015). New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. Journal of Theoretical Biology, 383, 7–11. https://doi.org/10.1016/j.jtbi.2015.07.027

    Article  CAS  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., Abdelly, C., & Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technolology, 101, 6822–6828. https://doi.org/10.1016/j.biortech.2010.03.097

    Article  CAS  Google Scholar 

  • Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M. H., Abdelly, C., & Smaoui, A. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47, 463–468. https://doi.org/10.1111/j.1365-2028.2008.00989.x

    Article  Google Scholar 

  • Rakshit, A., Maiti, R., & Sarkar, N. C. (2010). Salt-affected soils and their managements stress management. Journal of International Management, 1, 5–12.

    Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664. https://doi.org/10.1016/j.soilbio.2007.02.005

    Article  CAS  Google Scholar 

  • Sassi, H., Farhat, N., Jendoubi, R., Elkhouni A, Zorrig, W., Smaoui, A, Abdelly C., & Rabhi, M. (2017). Optimal soil salinity levels for the highest phytodesalination parameters in the obligate halophyte Sesuvium portulacastrum L. Agrochimica, 61, 329–339. https://doi.org/10.12871/00021857201744

  • Schandry, N., & Becker, C. (2020). Allelopathic plants: Models for studying plant–interkingdom interactions. Trends in Plant Science, 25, 176–185. https://doi.org/10.1016/j.tplants.2019.11.004

    Article  CAS  Google Scholar 

  • Shahid, S. A., Zaman, M., & Heng, L. (2018a). Introduction to soil salinity, sodicity and diagnostics techniques. In: M. Zaman, S. A., Shahid, & L., Heng (Eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 1–42). Springer.

  • Shahid, S. A., Zaman, M., & Heng, L. (2018b). Soil salinity: Historical perspectives and a world overview of the problem. In: M. Zaman, S. A., Shahid, & L., Heng (Eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43–53). Springer.

  • Tisarum, R., Samphumphuang, T., Cha-um, K., Khamduang, M., & Cha-um, S. (2021). Characterization of macrophytes for Na+ removal in synthetic Na-salt solution batch under greenhouse conditions. International Journal of Phytoremediation, 23, 1270–1278. https://doi.org/10.1080/15226514.2021.1894090

    Article  CAS  Google Scholar 

  • USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook No 60 Washington DC.

Download references

Funding

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR10CBBC02).

Author information

Authors and Affiliations

Authors

Contributions

WM and MR contributed to the work from the beginning to the end. HE and NF helped in plant and soil analyses. AA, AMA, WZ, and AS helped in data analysis. CA was the fund recipient and helped in the manuscript finalization.

Corresponding author

Correspondence to Hasna Ellouzi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medini, W., Ellouzi, H., Farhat, N. et al. Monoculture and Coculture of Sesuvium portulacastrum and Sulla carnosa Under Saline and Non-Saline Conditions: Plant Vigour and Soil Phytodesalination. Water Air Soil Pollut 234, 460 (2023). https://doi.org/10.1007/s11270-023-06461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06461-y

Keywords

Navigation