Skip to main content

Advertisement

Log in

Salt stress mitigation in Lathyrus cicera by combining different microbial inocula

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

A Correction to this article was published on 01 May 2023

This article has been updated

Abstract

Arid and semi-arid areas are considered vulnerable to various environmental constraints which are further fortified by climate change. Salinity is one of the most serious abiotic factors affecting crop yield and soil fertility. Till now, no information is available on the effect of salinity on development and symbiotic nitrogen (N2) fixation in the legume species Lathyrus cicera. Here, we evaluated the effect of different microbial inocula including nitrogen-fixing Rhizobium laguerreae, arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, a complex mixed inoculum of AMF isolated from rhizospheric soil in “Al Aitha”, and various plant growth-promoting bacteria (PGPB) including Bacillus subtilus, Bacillus simplex and Bacillus megaterium combined with Rhizobium, the AMF consortium, or R. irregularis on alleviating salt stress in this legume. A pot trial was conducted to evaluate the ability of different microbial inocula to mitigate adverse effects of salinity on L. cicera plants. The results showed that salinity (100 mM NaCl) significantly reduced L. cicera plant growth. However, inoculation with different inocula enhanced plant growth and markedly promoted various biochemical traits. Moreover, the combined use of PGPB and AMF was found to be the most effective treatment in mitigating deleterious effects of salinity stress on L. cicera. In addition, this co-inoculation upregulated the expression of two marker genes (LcHKT1 and LcNHX7) related to salinity tolerance. Our findings suggest that the AMF/PGPB formulation has a great potential to be used as a biofertilizer to improve L. cicera plant growth and productivity under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Abdel Latef AA, Miransari M (2014) The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Use of microbes for the alleviation of soil stresses in Springer Science+Business Media. New York USA: 23–39

  • Aebi H (1984) Catalase Methods in Enzymology 105:121–126

    CAS  PubMed  Google Scholar 

  • Aftab T, Khan MMA, Silva JAT, Idrees M, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisi nin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    CAS  Google Scholar 

  • Ajithkumar IPPR (2014) ROS scavenging system osmotic maintenance pigment and growth status of panicum sumatrense roth. Under Drought Stress Cell Biochem Biophys 68:587–595. https://doi.org/10.1007/s12013-013-9746-x

    Article  CAS  PubMed  Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment searchtool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I et al (2017) Drought induced changes in growth osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci 8:69

    PubMed  PubMed Central  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Onto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte MBE (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth flower development and reproduction. Plant Cell 23:3482–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Shukla S, Tewari SK, Katiyar RS, Kalra A (2016) TA. integrated application of Exiguobacterium oxidotolerans Glomus fasciculatum and vermicompost improves growth yield and quality of Mentha arvensis in salt-stressed soils. Ind Crops Prod 83:717–728

    Google Scholar 

  • Bhatti KH, Anwar S, Nawaz K, Hussain K, Siddiqi E, Sharif R, Talat AKA (2013) Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress Middle East. J Sci Res 14:130–137

    CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exper Botany 60:3097–3107

    CAS  Google Scholar 

  • Bouksila F, Bahri A, Berndtsson R, Persson M, Rozema J, Van der Zee S (2013) Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ Exp Bot 92:176–185

    CAS  Google Scholar 

  • Bowles TM, Barrios Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield nutrient uptake water relations and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566–567:1223–1234

    PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes S (2016) High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caravaca F, Alguacil MM, Hernández JA (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197

    CAS  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+ permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J. Exp. Bot 67:4611–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular Mycorrhizal Symbiosis Alleviates salt stress in black Locust through improved Photosynthesis water status and K+/Na+ Homeostasis. Front Plant Sci 8:1739. https://doi.org/10.3389/fpls.2017.0173

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios NSM (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davison J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115

    CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME J 4:337–345

    PubMed  Google Scholar 

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Akhal MR, Rincón A, Coba Dela Peña T, Lucas MM, El Mourabit N, Barrijal S, Pueyo J (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol 15:415–421

    CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23:71–86

    CAS  PubMed  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  PubMed  Google Scholar 

  • Ferreres F, Magalhães SCQ, Gil-Izquierdo A, Valentão P, Cabrita ARJ, Fonseca AJM, Andrade P (2017) HPLC-DADESI/MSn profiling of phenolic compounds from.L. seeds. Food Chem 214:678–685

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmar TD (2008) Salinity tolerance in halophytes. New Phytologist 179:945–963

    CAS  PubMed  Google Scholar 

  • Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Rubio-Asensio JS, Bru R et al (2015) New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol 205:216–239

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiol. Biochem 48:909–930

    CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I et al (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    CAS  PubMed  Google Scholar 

  • Gritli T, Ellouze W, Chihaoui S A, Barhoumi F, Mhamdi R, Mnasri B (2020) Genotypic and symbiotic diversity of native rhizobia nodulating redpea (Lathyrus cicera L.) in Tunisia. Systematic and Applied Microbiology. 43 126049

  • Hanbury CD, White CL, Mullan BP, Siddique KHM (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Technol 87:1–27

    Google Scholar 

  • Hashem A, Adb Allah EF, Alqarawi AA, Al-Huqail AA, Shah M (2016) Induction of Osmoregulation and modulation of salt stress in Acacia gerrardii Benth by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71). Hindawi 1:1–11

    Google Scholar 

  • Hatfield JL, Charles LW (2015) Meeting global food needs: realizing the potential via genetics× environment× management interactions. Agron J 107(4):1215–1226

    Google Scholar 

  • Hedge J E ,Hofreiter B T (1962) In: Carbohydrate Chemistry 17. Academic P. Edited by J. N. Whistler R L and Be Miller.

  • Hidri R, Barea JM, Mahmoud MB, Abdelly C, Azcón R (2016) No Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances and in regulating nutrition physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41

    CAS  PubMed  Google Scholar 

  • Irshad A, Rehman RNU, Abrar MM, Saeed Q, Sharif R, Hu T (2021) Contribution of Rhizobium-Legume symbiosis in salt stress tolerance in Medicago truncatula evaluated through photosynthesis antioxidant enzymes and compatible solutes accumulation. Sustainability 13:3369

    CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau KBJ (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Koch AM, Antunes PM, Maherali H et al (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Goodfellow M (ed) Nucleic acid techniques in bacterial systematics; stackebrandt E. JohnWiley & Sons, New York, NY, USA, pp 115–175

    Google Scholar 

  • Livak KJ, Schmittgen T (2001) Analysis of relative gene expressiondata using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Llorent-Martínez EJ, Ortega-Barrales P, Zengin G, Mocan A, Simirgiotis MJ, Ceylan R, Aktumsek A (2017) Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: potential sources of bioactive compounds for the food industry. Food and Chem Toxicol 107:609–619

    Google Scholar 

  • Llorent-Martínez E J, Ortega-Barrales P, Zengin G, Mocan A, Simirgiotis M J, Ceylan, Mantri N, Patade V, Penna S, Ford R P E (2012) Abiotic stress responses in plants: present and future. in In: Abiotic stress responses in plants Springer. New York NY : 1–19.

  • Mhadhbi H, Djébali N, Chihaoui S, Jebara M, Mhamedi R (2011) Nodule senescence in Medicago truncatula-sinorhizobium symbiosis under abiotic constraints: biochemical and structural processes involved in maintaining nitrogen-fixing capacity. J Plant Growth Regul 30:480–489

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci. 7:405–410

    CAS  PubMed  Google Scholar 

  • Mosbah M, Philippe DL, Mohamed M (2018) Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Sci Plant Nutrition 64:335–341

    CAS  Google Scholar 

  • Motaleb NA, Elhady SA, Ghoname A (2020) AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanz 72:29–39

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts Yoshiyuki. Plant & Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    PubMed  PubMed Central  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    CAS  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223–241

    PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM et al (2010b) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    PubMed  Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147

    Google Scholar 

  • Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growthpromoting rhizobacteria. Physiol Plant 118:10–15

    CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Google Scholar 

  • Porcel R, Aroca R, Azcon R et al (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684. https://doi.org/10.1007/s00572-016-0704-5

    Article  CAS  PubMed  Google Scholar 

  • Qiu YJ et al (2020) Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol Mol Plant Pathol 112:101522

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    CAS  PubMed  Google Scholar 

  • Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Anjum RMA, Wang B et al (2020) Appraising growth oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manag 257:109994

    CAS  Google Scholar 

  • Santos C, Almeida NF, Alves ML, Horres R, Krezdorn N, Trindade Leitão S, Aznar-Fernández T, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2018) First genetic linkage map of Lathyrus cicera based on RNA sequencing-derived markers: Key tool for genetic mapping of disease resistance. Horticulture Res 5:45

    Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Microbiol Res 169:20–32

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Shagol C, Kim K, Han S, Sa T (2018) Spore associated bacteria regulates maize root K+/ Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biol 18:109

    PubMed  PubMed Central  Google Scholar 

  • Sharma V, Ramawat KG (2014) Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia 69:178–185

    CAS  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    PubMed  PubMed Central  Google Scholar 

  • Shi HZ, Ishitani M, Kim CZJ (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell. 14:465–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y et al (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    CAS  PubMed  Google Scholar 

  • Singh RP, Jha P (2016) The Multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11:e0155026

    PubMed  PubMed Central  Google Scholar 

  • Singh M, Tiwari N (2021) Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Commun Integr Biol 14:136–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS (2010) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep. 10:4818

    Google Scholar 

  • Sun Z, Song J, Xin X, Xie X, Zhao B (2018) Arbuscular mycorrhizal fungal proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front Microbiol 5:9–19

    Google Scholar 

  • Sunarpi T, Horie J, Motoda M, Kubo H, Yang K, Horie Yoda R et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+unloading from xylem vessels to xylem parenchyma cells. Plant J. 44:928–938

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. The society for molecular biology and evolution. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiknia M, Skiada V, Ipsilantis I, Vasileiadis S, Kavroulakis N, Genitsaris S, Papadopoulou KK, Hart M, Klironomos J, Karpouzas DG, Ehaliotis C (2021) Strong host-specific selection and over-dominance characterize arbuscular mycorrhizal fungal root colonizers of coastal sand dune plants of the Mediterranean region. FEMS Microbiol Ecol 97:fiab109

    CAS  PubMed  Google Scholar 

  • Vadez V, Rodier F, Payré H, Drevon JJ (1996) Nodules permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34:871–878

    CAS  Google Scholar 

  • Vaz Patto MC, Rubiales D (2014) Lathyrus diversity: available resources with relevance to crop improvement–L. sativus and L. cicera as case studies. Annals of botany 113(6):895–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Sun Y, Shi Z (2019) Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7:289

    CAS  PubMed  PubMed Central  Google Scholar 

  • White CL, Hanbury CD, Young P, Phillips N, Wiese SC, Milton JB, Davidson RH, Siddique KHM, Harris D (2012) The nutritional value of Lathyrus cicera and Lathyrus sativus grain for sheep. Anim Feed Sci Technol 99(1–4):45–64

    Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang M (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies 48:147–158

    Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhou Y, Fan J, Fu Y, Shen L, Yao Y, Li R, Fu S, Duan R, Hu X et al (2015) SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Plant Physiol Biochem 96:377–387

    CAS  PubMed  Google Scholar 

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L). Agriculture 60(1):10

    CAS  Google Scholar 

  • Yu QRZ (1999) Waterlogging influences plant growth and activities of superoxide dismutases in narrow-leafed lupin and transgenic tobacco plants. J Plant Physiol 155:431–438

    CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong QH, Chao XH, Zhi BZ et al (2007) Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133. https://doi.org/10.1016/j.colsurfb.2007.04.023

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Maria Carlota VazPatto and Dr Carmen Santos for providing HKT1 and NHX7 gene sequences from their unpublished L. cicera transcriptomic databases. This research was funded by scholarships from the "International Relations Office Frau Veronika Favre", University of Fribourg and the Tuniso-Moroccan bilateral project (20/PRD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takwa Gritli.

Ethics declarations

Conficts of interest

The authors declare that there are no conficts of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6405 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritli, T., Boubakri, H., Essahibi, A. et al. Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. Physiol Mol Biol Plants 28, 1191–1206 (2022). https://doi.org/10.1007/s12298-022-01205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01205-4

Keywords

Navigation