Skip to main content
Log in

Synthesis and Characterization of a Coagulating Agent from Plantain Peel Starch (Musa paradisiaca), as Coadjuvant in Water Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Coagulation processes are widely used for water treatment, mainly with chemical coagulants. In this research, starch derived from a waste (unripe plantain peel, Musa paradisiaca) was used as a starting point for a chemical modification.

Through acetylation, its chemical structure was modified and characterized by infrared spectrophotometry, for its evaluation as a coadjuvant in coagulation operations to reduce the turbidity of raw water. Two experimental designs were developed to evaluate the incidence of modified starch as the main coagulant, or in conjunction with a conventional coagulant (Al2(SO4)3), at different (Al2(SO4)3)/acetylated starch ratios, in jar-test experiments.

In the first experimental design, with the acetylated starch as the main coagulant, turbidity removal percentages reached 47.93% (average value, 41.18%). For the (Al2(SO4)3)/acetylated starch coagulation process, 98.91% turbidity removal was reached in the second experimental design (average value, 97.16%). The impact of starch chemical substitution degree and the (Al2(SO4)3)/acetylated starch ratio on the final turbidity obtained in the jar-tests was determined using ANOVA test. There was a great influence of the chemical substitution degree and the concentration of acetylated starch utilized, when modified starch was used as the main coagulant. For the second experimental design, the (Al2(SO4)3)/acetylated starch ratio had a greater incidence on the turbidity removal. Thus, modified starch obtained from plantain peel waste is a promising coadjuvant material for water coagulation processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amaya-Pinos, J. B. (2018). Resumen Química Aplicada y Analítica Estudio de la dosificación Study of the starch dose thermoplastic type polymer amido extraído de bananas em um polímero de tipo Introducción. Revista Colombiana De Quimica, 48(1), 43–51.

    Google Scholar 

  • Anastasakis, K., Kalderis, D., & Diamadopoulos, E. (2009). Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 249(2), 786–791. https://doi.org/10.1016/j.desal.2008.09.013

    Article  CAS  Google Scholar 

  • AOAC. (1920). Association of Official Analytical Chemists. Official Method of Analysis. Test Method: AOAC 920.44–1920. Title: Starch in baking powders. https://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=1918

  • AOAC. (1923). Association of Official Analytical Chemists. Official Method of Analysis. Test method: AOAC 906.03–1906. Title: Invert sugar in sugars and syrups. Munson-walker general method. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2580

  • AOAC. (2000). Association of Official Analytical Chemists. Official Method of Analysis. Test method: AOAC 942.05. Title: Ash for animal feed. http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2464

  • ASTM. (2018). ASTM D7315 - 17. Standard test method for determination of turbidity above 1 turbidity unit (TU) in static mode. Retrieved January 10, 2022. https://www.astm.org/d7315-17.html

  • ASTM. (2019). ASTM D2035 – 13. Standard practice for coagulation-flocculation jar test of water. Retrieved January 10, 2022. https://www.astm.org/d2035-13.html

  • Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. In Water 21 (Issue AUG.). https://doi.org/10.2166/9781780407500

  • Bratskaya, S., Schwarz, S., & Chervonetsky, D. (2004). Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research, 38(12), 2955–2961. https://doi.org/10.1016/j.watres.2004.03.033

    Article  CAS  Google Scholar 

  • Chen, Q., Yu, H., Wang, L., UlAbdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R. U., Zhang, H., & Chen, X. (2015). Recent progress in chemical modification of starch and its applications. RSC Advances, 5(83), 67459–67474. https://doi.org/10.1039/c5ra10849g

    Article  CAS  Google Scholar 

  • Colussi, R., Pinto, V. Z., El Halal, S. L. M., Vanier, N. L., Villanova, F. A., Marques, E., Silva, R., Rosa Zavareze Da, E., & Dias, A. R. G. (2014). Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate Polymers, 103(1), 405–413. https://doi.org/10.1016/j.carbpol.2013.12.070

    Article  CAS  Google Scholar 

  • Creed, I. F., Trick, C. G., Band, L. E., & Morrison, I. K. (2002). Characterizing the spatial pattern of soil carbon and nitrogen pools in the turkey lakes watershed : Water. Air and Soil Pollution, 2, 81–102. https://doi.org/10.1023/A:1015886308016

    Article  CAS  Google Scholar 

  • Diaz, A., Rincon, N., Escorihuela, A., Fernandez, N., Chacin, E., & Forster, C. F. (1999). A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela. Process Biochemistry, 35(3–4), 391–395. https://doi.org/10.1016/S0032-9592(99)00085-0

    Article  CAS  Google Scholar 

  • Damodaran, S., Parkin, K. L., & Fennema, O. R. (Eds.). (2007). Fennema's food chemistry. CRC press.

  • Ferreira-Villadiego, J., García-Echeverri, J., Vidal, M. V., Pasqualino, J., Meza-Castellar, P., & Lambis-Miranda, H. A. (2018). Chemical modification and characterization of starch derived from plantain (Musa paradisiaca) peel waste, as a source of biodegradable material. Chemical Engineering Transactions, 65. https://doi.org/10.3303/CET1865128

  • Grace, M. R. (1971). Processing of cassava. FAO. Retrieved February 22, 2022. https://www.worldcat.org/title/elaboracion-de-la-yuca/oclc/41798408

  • Guerra-Dellavalle, D., Sánchez-Rivera, M. M., Zamudio-Flores, P. B., Méndez-Montealvo, G., & Bello-Pérez, L. A. (2009). Effect of chemical modification type on physicochemical and rheological characteristics of banana starch. Revista Mexicana De Ingeniera Quimica, 8(2), 197–203.

    CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9. Retrieved June 5, 2022. https://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hernández-Carmona, F., Morales-Matos, Y., Lambis-Miranda, H., & Pasqualino, J. (2017). Starch extraction potential from plantain peel wastes. Journal of Environmental Chemical Engineering, 5(5). https://doi.org/10.1016/j.jece.2017.09.034

  • Ismail, N. A., Mohd Tahir, S., Yahya, N., Abdul Wahid, M. F., Khairuddin, N. E., Hashim, I., Rosli, N., & Abdullah, M. A. (2016). Synthesis and characterization of biodegradable starch-based bioplastics. Materials Science Forum, 846(2017), 673–678. https://doi.org/10.4028/www.scientific.net/MSF.846.673

    Article  Google Scholar 

  • Lopez-Diago, L. F., Castillo, K., Vidal, M. V., Pasqualino, J., Meza-Castellar, P., & Lambis-Miranda, H. A. (2018). Evaluation of the production of starch from bitter cassava (Manihot utilissima) using different methodologies. Chemical Engineering Transactions, 65. https://doi.org/10.3303/CET1865103

  • Luo, Z. G., & Shi, Y. C. (2012). Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties. Journal of Agricultural and Food Chemistry, 60(37), 9468–9475. https://doi.org/10.1021/jf301178c

    Article  CAS  Google Scholar 

  • Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094

    Article  CAS  Google Scholar 

  • Mason, W. R. (2009). Starch use in foods. Elsevier Inc. https://doi.org/10.1016/B978-0-12-746275-2.00020-3

    Book  Google Scholar 

  • Mina, J., Valadez-González, A., Herrera-Franco, P., Zuluaga, F., & Delvasto, S. (2011). Physicochemical characterization of natural and acetylated thermoplastic cassava starch. Dyna, 78(166), 166–173.

    Google Scholar 

  • Montgomery, D. (2003). Applied statistics and probability for engineers Third Edition. In Phoenix Usa, 37(4). https://doi.org/10.2307/1269738

  • Montgomery, D. C. (2017). Design and analysis of experiments. 6th Edition, John Wiley and Sons, New York.

  • Montoya, D., Murillo, W., Barbosa, L., & Méndez, J. (2015). Acetilación enzimática de almidones: Una opción de valor agregado. Tumbaga, 1(10), 6.

    Google Scholar 

  • Morrison, W. R., & Laignelet, B. (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. Journal of Cereal Science, 1(1), 9–20. https://doi.org/10.1016/S0733-5210(83)80004-6

    Article  CAS  Google Scholar 

  • Prachayawarakorn, S., Raikham, C., & Soponronnarit, S. (2016). Effects of ripening stage and steaming time on quality attributes of fat free banana snack obtained from drying process including fluidized bed puffing. Journal of Food Science and Technology, 53(2), 946–955. https://doi.org/10.1007/s13197-015-2051-5

    Article  Google Scholar 

  • Rendón-Villalobos, R., García-Hernández, E., Güizado-Rodríguez, M., Salgado-Delgado, R., & Rangel-Vázquez, N. A. (2010). Obtención y caracterización de almidón de plátano (Musa paradisiaca L.) acetilado a diferentes grados de sustitución. Afinidad, 67(548), 294-300. https://raco.cat/index.php/afinidad/article/view/269205

  • Rivas-González, M., Zamudio-Flores, P. B., & Bello-Pérez, L. A. (2009). Effect of the acetylation degree on the morphological and physicochemical characteristics of banana starch. Revista Mexicana De Ingeniera Quimica, 8(3), 291–297.

    Google Scholar 

  • Salcedo-Mendoza, J. (2016). Effect of the acetylation process on native starches of yam (Dioscorea spp). Revista Facultad Nacional de Agronomia Medellin, 69(2), 7997–8006. https://doi.org/10.15446/rfna.v69n2.59144

    Article  Google Scholar 

  • Sánchez-Rivera, M. M., Flores-Ramírez, I., Zamudio-Flores, P. B., González-Soto, R. A., Rodríguez-Ambríz, S. L., & Bello-Pérez, L. A. (2010). Acetylation of banana (Musa paradisiaca L.) and maize (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: Partial characterization. Starch/Staerke, 62(4), 155–164. https://doi.org/10.1002/star.200900209

    Article  CAS  Google Scholar 

  • Sandoval, A., Rodriguez, E., & Fernandez, A. (2005). Application of analysis by differential scanning calorimetry (DSC) for the characterization of the modifications of the starch. Revista De La Facultad De MINAS (DYNA), 72, 45–53.

    Google Scholar 

  • Smith, A. M. (2001). The biosynthesis of starch granules. Biomacromolecules, 2(2), 335–341. https://doi.org/10.1021/bm000133c

    Article  CAS  Google Scholar 

  • Sodhi, N. S., & Singh, N. (2003). Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chemistry, 80(1), 99–108. https://doi.org/10.1016/S0308-8146(02)00246-7

    Article  Google Scholar 

  • Sodhi, N. S., & Singh, N. (2005). Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering, 70(1), 117–127. https://doi.org/10.1016/j.jfoodeng.2004.09.018

    Article  Google Scholar 

  • Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42(5), 1022–1025. https://doi.org/10.1016/j.lwt.2008.12.017

    Article  CAS  Google Scholar 

  • United Nations Development Programme. (2022). Sustainable development goals (UNDP). United Nations Development Programme (UNDP). Retrieved March 4, 2022. https://www.undp.org/sustainable-development-goals

  • Valls, C., Rojas, C., Pujadas, G., Garcia-Vallve, S., & Mulero, M. (2012). Characterization of the activity and stability of amylase from saliva and detergent: Laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents. Biochemistry and Molecular Biology Education, 40(4), 254–265. https://doi.org/10.1002/bmb.20612

    Article  CAS  Google Scholar 

  • Vargas, G., Martínez, P., & Velezmoro, C. (2016). Functional properties of potato (Solanum tuberosum) starch and its chemical modification by acetylation. Scientia Agropecuaria, 7(3), 223–230. https://doi.org/10.17268/sci.agropecu.2016.03.09

    Article  Google Scholar 

  • Venegas, R., Torres, A., Rueda, A. M., Morales, M. A., Arias, M. J., & Porras, A. (2022b). Development and characterization of plantain (Musa paradisiaca) flour-based biopolymer films reinforced with plantain fibers. Polymers, 14, 748–763. https://doi.org/10.3390/polym14040748

    Article  CAS  Google Scholar 

  • Venegas, R., Torres, A., Rueda, A. M., Morales, M. A., Arias, M. J., & Porras, A. (2022a). Development and characterization of plantain (Musa paradisiaca) flour-based biopolymer films reinforced with plantain fibers. Polymers, 14(4). https://doi.org/10.3390/polym14040748

  • Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705https://doi.org/10.1080/10408398.2015.1087379

Download references

Acknowledgements

The authors would like to thank the support given by the Fundación Universitaria Tecnológico Comfenalco — Cartagena (Colombia), the members of the CIPTEC Research Group, and Universidad Tecnológica de Bolívar for their support during the development of the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Mr. Cortés-Pérez and Mr. Pérez-Montalvo performed the experiments. Mr. Puello-Silva provided technical support, participated in the design and interpretation of the data, supervised the research, and revised the manuscript. Dr. Pasqualino provided technical support, participated in the design and interpretation of the data, wrote the paper, and participated in the revisions of it. Mr. Lambis-Miranda conceived this research, designed and performed the experiments, participated in the design and interpretation of the data, supervised the research, wrote the paper, and participated in the revisions of it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Henry A. Lambis-Miranda.

Ethics declarations

Statement of Novelty

The food industry worldwide produces a large amount of waste from agro-industrial raw materials. This work presents a route for the reuse of agroindustrial waste (Musa paradisiaca) to generate a boost to the circular economy. Their chemical modification for use as coadjuvant agents in water treatment is a novel alternative to progressively reduce conventional coagulating agents’ use.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortes-Pérez, C., Pérez-Montalvo, L., Pasqualino, J. et al. Synthesis and Characterization of a Coagulating Agent from Plantain Peel Starch (Musa paradisiaca), as Coadjuvant in Water Treatment. Water Air Soil Pollut 234, 316 (2023). https://doi.org/10.1007/s11270-023-06323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06323-7

Keywords

Navigation