Skip to main content
Log in

Dual Valorization of Potato Peel (Solanum tuberosum) as a Versatile and Sustainable Agricultural Waste in Both Bioflocculation of Eriochrome Black T and Biosorption of Methylene Blue

  • OriginalPaper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Current research has developed an effective and economical technique for the double valorization of potato peel (PP), a very abundant and accessible waste material. It was subjected to the extraction of starch which was further used without any modification as a coagulant aid for the removal of Eriochrome Black T (EBT). Unmodified PP starch was proven to be an effective plant-derived material for the reduction of EBT in aqueous solution by coagulation-flocculation, increasing EBT removal efficiency from 63.66% to 80.98% when 4 g/L of PP starch were used together with 0.5 g/L of alum. Although PP starch alone was found inefficient for removing EBT, its usage as a flocculant produced larger flocs than alum alone, resulting in a quicker and more efficient decantation. The remaining PP residue from starch extraction process was used as a biosorbent for the removal of Methylene Blue (MB) in aqueous solution, then characterized by Fourier Transform Infrared Spectroscopy for the determination of functions involved in the MB uptake, the point of zero charge (pHpzc) was also determined. The findings indicate that the initial dye concentration, biosorbent dosage, and pH all have a beneficial effect on the biosorption. However, increasing the ionic strength and particle size has a detrimental impact on dye removal. Adsorption kinetics and isotherms were studied: according to investigations, the adsorption of MB dye onto PP residue adsorbent followed the pseudo-second order kinetic model. The equilibrium sorption research found that the Langmuir isotherm model best matched the experimental results with a qmax of 25.00 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmoune F, Madani K, Remini H (2018) Removal of methylene blue from aqueous solutions by adsorption on Kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. https://doi.org/10.1016/j.clay.2017.11.034

    Article  CAS  Google Scholar 

  2. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  3. Gallego-Ramírez C, Chica E, Rubio-Clemente A (2022) Coupling of advanced oxidation technologies and biochar for the removal of dyes in water. Water 14:2531. https://doi.org/10.3390/w14162531

    Article  CAS  Google Scholar 

  4. Chatla A, Almanassra IW, Kochkodan V, Laoui T, Alawadhi H, Atieh MA (2022) Efficient Removal of Eriochrome Black T (EBT) dye and chromium (Cr) by hydrotalcite-derived Mg–Ca–Al mixed metal oxide composite. Catalysts 12:1247. https://doi.org/10.3390/catal12101247

    Article  CAS  Google Scholar 

  5. Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14:242. https://doi.org/10.3390/w14020242

    Article  CAS  Google Scholar 

  6. Díaz A, Marrero J, Cabrera G, Coto O, Gómez J (2022) Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology. Environ Monit Assess 194:1–18. https://doi.org/10.1007/s10661-022-09816-w

    Article  CAS  Google Scholar 

  7. Sarıkaya AG, Kopar EE (2022) Biosorption of sirius blue azo-dye by Agaricus campestris biomass: batch and continuous column studies. Mater Chem Phys 276:125381. https://doi.org/10.1016/j.matchemphys.2021.125381

    Article  CAS  Google Scholar 

  8. Sathya A, Sivashankar R, Kanimozhi J, Devika R, Balaji R (2022) Biosorption and different native sources for preparation of biosorbents. Biosorption Wastewater Contam. https://doi.org/10.1002/9781119737629.ch2

    Article  Google Scholar 

  9. Tee WT, Loh NYL, Hiew BYZ, Hanson S, Thangalazhy-Gopakumar S, Gan S, Lee LY (2022) Effective remediation of lead (II) wastewater by Parkia speciosa pod biosorption: Box-Behnken design optimisation and adsorption performance evaluation. Biochem Eng J 187:108629. https://doi.org/10.1016/j.bej.2022.108629

    Article  CAS  Google Scholar 

  10. Rodríguez Martínez B, Gullón B, Yáñez R (2021) Identification and recovery of valuable bioactive compounds from potato peels: a comprehensive review. Antioxidants 10:1630. https://doi.org/10.3390/antiox10101630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage 227:395–405. https://doi.org/10.1016/j.jenvman.2018.08.069

    Article  CAS  PubMed  Google Scholar 

  12. Sepelev I, Galoburda R (2015) Industrial potato peel waste application in food production: a review. Res Rural Dev 1:130–136

    Google Scholar 

  13. Zhou Y-H, Vidyarthi SK, Yang X-H, Duan X, Liu ZL, Mujumdar AS, Xiao HW (2022) Conventional and novel peeling methods for fruits and vegetables: a review. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2022.102961

    Article  Google Scholar 

  14. Hadadi A, Imessaoudene A, Bollinger J-C, Assadi AA, Amrane A, Mouni L (2022) Comparison of four plant-based bio-coagulants performances against alum and ferric chloride in the turbidity improvement of bentonite synthetic water. Water 14:3324. https://doi.org/10.3390/w14203324

    Article  CAS  Google Scholar 

  15. Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, Rahim NFM, Said NSM, Abdullah SRS, Kasan NA, Ismail S, Othman AZ, Hasan HA (2022) What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? Sci Total Environ 806:150902

    Article  CAS  PubMed  Google Scholar 

  16. Moud AA (2022) Polymer based flocculants: review of water purification applications. J Water Process Eng 48:102938. https://doi.org/10.1016/j.jwpe.2022.102938

    Article  Google Scholar 

  17. Li L, Peng C, Zhan Z, Ma F, Zhang J (2022) A novel treatment for amelioration of sludge dewaterability using green starch-grafted flocculant and realized mechanism. Sep Purif Technol 301:122060. https://doi.org/10.1016/j.seppur.2022.122060

    Article  CAS  Google Scholar 

  18. Zubair M, Aziz HA, Ahmad MA, Ihsanullah I, Al-Harthi MA (2021) Adsorption and reusability performance of M–Fe (M = Co, Cu, Zn and Ni) layered double hydroxides for the removal of hazardous Eriochrome Black T dye from different water streams. J Water Process Eng 42:102060. https://doi.org/10.1016/j.jwpe.2021.102060

    Article  Google Scholar 

  19. El Mansouri F, Pelaz G, Morán A, Da Silva JCGE, Cacciola F, El Farissi H, Tayeq H, Zerrouk MH, Brigui J (2022) Efficient removal of Eriochrome Black T dye using activated carbon of waste hemp (Cannabis sativa L.) grown in Northern Morocco enhanced by new mathematical models. Separations. https://doi.org/10.3390/separations9100283

    Article  Google Scholar 

  20. Manzar MS, Ahmad T, Ullah N, Chellam PV, John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E (2022) Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Sep Purif Technol 287:120559. https://doi.org/10.1016/j.seppur.2022.120559

    Article  CAS  Google Scholar 

  21. Altemimi A (2018) Extraction and optimization of potato starch and its application as a stabilizer in yogurt manufacturing. Foods 7:14. https://doi.org/10.3390/foods7020014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Castro DS, dos Santos MI, de Melo Silva LM, Lima JP, da Silva WP, Gomes JP, de Figueirêdo RMF (2019) Isolation and characterization of starch from pitomba endocarp. Food Res Int 124:181–187. https://doi.org/10.1016/j.foodres.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  23. Tesfaye T, Gibril M, Sithole B, Ramjugernath D, Chavan R, Chunilall V, Gounden N (2018) Valorisation of avocado seeds: extraction and characterisation of starch for textile applications. Clean Technol Environ Policy 20:2135–2154. https://doi.org/10.1007/s10098-018-1597-0

    Article  CAS  Google Scholar 

  24. Kielkopf CL, Bauer W, Urbatsch IL (2020) Bradford assay for determining protein concentration. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot102269

    Article  PubMed  Google Scholar 

  25. Teh CY, Wu TY, Juan JC (2014) Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: treatment performance and flocs characterization. Ecol Eng 71:509–519. https://doi.org/10.1016/j.ecoleng.2014.07.005

    Article  Google Scholar 

  26. Imessaoudene A, Cheikh S, Bollinger J-C, Belkhiri L, Tiri A, Bouzaza A, El Jery A, Assadi A, Amrane A, Mouni L (2022) Zeolite waste characterization and use as low-cost, ecofriendly, and sustainable material for malachite green and methylene blue dyes removal: box-Behnken design, kinetics, and thermodynamics. Appl Sci 12:7587. https://doi.org/10.3390/app12157587

    Article  CAS  Google Scholar 

  27. Silva F, Nascimento L, Brito M, da Silva K, Paschoal W Jr, Fujiyama R (2019) Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials 12:2486. https://doi.org/10.3390/ma12152486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bouchelkia N, Mouni L, Belkhiri L, Bouzaza A, Bollinger JC, Madani K, Dahmoune F (2016) Removal of lead (II) from water using activated carbon developed from jujube stones, a low-cost sorbent. Sep Sci Technol 51:1645–1653. https://doi.org/10.1080/01496395.2016.1178289

    Article  CAS  Google Scholar 

  29. Vannini M, Marchese P, Sisti L, Saccani A, Mu T, Sun H, Celli A (2021) Integrated efforts for the valorization of sweet potato by-products within a circular economy concept: biocomposites for packaging applications close the loop. Polymers 13:1048. https://doi.org/10.1007/s11270-020-04903-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad AGD, Abdullah MA (2009) Biosorption potential of potato peel waste for the removal of nickel from aqueous solutions: equilibrium and kinetic studies. Int J Chem Eng Res 1:77–87

    Google Scholar 

  31. Ferraz CA, Fontes RL, Fontes-Sant’Ana GC, Calado V, López EO, Rocha-Leão MH (2019) Extraction, modification, and chemical, thermal and morphological characterization of starch from the agro-industrial residue of mango (Mangifera indica L) var. Ubá. Starch-Stärke 71:1800023. https://doi.org/10.1002/star.201800023

    Article  CAS  Google Scholar 

  32. Choy SY, Prasad KMN, Wu TY, Raghunandan ME, Yang B, Phang SM, Ramanan RN (2017) Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environ Sci Pollut Res 24:2876–2889. https://doi.org/10.1007/s11356-016-8024-z

    Article  CAS  Google Scholar 

  33. Aziz HA, Sobri NIM (2015) Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environ Sci Pollut Res 22:16943–16950. https://doi.org/10.1007/s11356-015-4895-7

    Article  CAS  Google Scholar 

  34. Jan KN, Panesar P, Singh S (2017) Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. J Food Meas Charact 11:1919–1927. https://doi.org/10.1007/s11694-017-9574-6

    Article  Google Scholar 

  35. Sudheesh C, Sunooj KV, George J, Kumar S, Sajeevkumar VA (2019) Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India. J Food Meas Charact 13:1020–1030. https://doi.org/10.1007/s11694-018-0016-x

    Article  Google Scholar 

  36. Zapata-Luna RL, Ayora-Talavera T, Pacheco N, García-Márquez E, Espinosa-Andrews H, Ku-González Á, Ruiz-Ruiz J, Cuevas-Bernardino JC (2021) Physicochemical, morpho-structural and rheological characterization of starches from three Phaseolus spp. landraces grown in Chiapas. J Food Meas Charact 15:1410–1421. https://doi.org/10.1007/s11694-020-00739-z

    Article  Google Scholar 

  37. Lazouski N, Steinberg KJ, Gala ML, Krishnamurthy D, Viswanathan V, Manthiram K (2022) Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal 12:5197–5208. https://doi.org/10.1021/acscatal.2c00389

    Article  CAS  Google Scholar 

  38. Abiola ON (2014) Appraisal of cassava starch as coagulant aid in the alum coagulation of congo red from aqua system. Int J Env Pollut Solut 2:47–58

    Google Scholar 

  39. ELsayed E, Nour El-Den A, Elkady M, Zaatout A (2021) Comparison of coagulation performance using natural coagulants against traditional ones. Sep Sci Technol 56:1779–1787. https://doi.org/10.1080/01496395.2020.1795674

    Article  CAS  Google Scholar 

  40. Hu P, Su K, Sun Y, Li P, Cai J, Yang H (2022) Efficient removal of nano-and micro-sized plastics using a starch-based coagulant in conjunction with polysilicic acid. Sci Total Environ 850:157829. https://doi.org/10.1016/j.scitotenv.2022.157829

    Article  CAS  PubMed  Google Scholar 

  41. Mavura W, Chemelil M, Saenyi W, Mavura H (2008) Investigation of chemical and biochemical properties of Maerua subcordata. Bull Chem Soc Ethiop. https://doi.org/10.4314/bcse.v22i1.61351

    Article  Google Scholar 

  42. Mohd-Asharuddin S, Othman N, Zin NSM, Tajarudin HA (2017) A chemical and morphological study of cassava peel: a potential waste as coagulant aid. EDP Sci 103:06012

    Google Scholar 

  43. El Bouaidi W, Libralato G, Douma M, Ounas A, Yaacoubi A, Lofrano G, Albarano L, Guida M, Loudiki M (2022) A review of plant-based coagulants for turbidity and cyanobacteria blooms removal. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20036-0

    Article  Google Scholar 

  44. Enenebeaku CK, Okorocha NJ, Uchechi EE, Ukaga IC (2017) Adsorption and equilibrium studies on the removal of methyl red from aqueous solution using white potato peel powder. Int Lett Chem Phys Astron 72:52. https://doi.org/10.18052/www.scipress.com/ILCPA.72.52

    Article  Google Scholar 

  45. Hu W, Yang L, Shao P, Shi H, Chang Z, Fang D, Wei Y, Feng Y, Huang Y, Yu K (2022) Proton self-enhanced hydroxyl-enriched cerium oxide for effective arsenic extraction from strongly acidic wastewater. Environ Sci Technol 56:10412–10422. https://doi.org/10.1021/acs.est.2c02675

    Article  CAS  PubMed  Google Scholar 

  46. Ünügül T, ugur nigiz F (2020) Preparation and characterization an active carbon adsorbent from waste mandarin peel and determination of adsorption behavior on removal of synthetic dye solutions. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04903-5

    Article  Google Scholar 

  47. Chedri Mammar A, Mouni L, Bollinger JC, Belkhiri L, Bouzaza A, Assadi AA, Belkacemi H (2020) Modeling and optimization of process parameters in elucidating the adsorption mechanism of Gallic acid on activated carbon prepared from date stones. Sep Sci Technol 55:3113–3125. https://doi.org/10.1080/01496395.2019.1676785

    Article  CAS  Google Scholar 

  48. Goswami R, Dey AK (2022) Use of anionic surfactant-modified activated carbon for efficient adsorptive removal of crystal violet dye. Adsorpt Sci Technol. https://doi.org/10.1155/2022/2357242

    Article  Google Scholar 

  49. Reddy YS, Magdalane CM, Kaviyarasu K, Mola GT, Kennedy J, Maaza M (2018) Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J Phys Chem Solids 123:43–51. https://doi.org/10.1016/j.jpcs.2018.07.009

    Article  CAS  Google Scholar 

  50. Balarak D, Al-Musawi TJ, Mohammed IA, Abasizadeh H (2020) The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Appl Sci 2:1–11. https://doi.org/10.1007/s42452-020-2841-x

    Article  CAS  Google Scholar 

  51. Hashem A, Aniagor CO, Morsy OM, Abou-Okeil A, Aly A (2022) Apricot seed shell: an agro-waste biosorbent for acid blue193 dye adsorption. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03272-9

    Article  Google Scholar 

  52. Bayomie OS, Kandeel H, Shoeib T, Yang H, Youssef N, El-Sayed MM (2020) Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-64727-5

    Article  CAS  Google Scholar 

  53. Seoane R, Santaeufemia S, Abalde J, Torres E (2022) Efficient removal of methylene blue using living biomass of the microalga Chlamydomonas moewusii: kinetics and equilibrium studies. Int J Environ Res Public Health 19:2653. https://doi.org/10.3390/ijerph19052653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Njanja E, Mbokou SF, Pontie M, Nacef M, Tonle IK (2019) Comparative assessment of methylene blue biosorption using coffee husks and corn cobs: towards the elaboration of a lignocellulosic-based amperometric sensor. SN Appl Sci 1:1–14. https://doi.org/10.1007/s42452-019-0520-6

    Article  CAS  Google Scholar 

  55. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    Article  CAS  Google Scholar 

  56. Akpomie K, Onoabedje E, Alumona T, Alum O, Okagu O, Ezeofor C (2017) Attenuation of methylene blue from aqua-media on acid activated montmorillonite of Nigerian origin. J Environ Sci Manag. https://doi.org/10.47125/jesam/2017_2/03

    Article  Google Scholar 

  57. Dehmani Y, Lamhasni T, Mohsine A, Tahri Y, Lee H, Lgaz H, Alrashdi AA, Abouarnadasse S (2022) Adsorption removal of phenol by oak wood charcoal activated carbon. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03036-5

    Article  Google Scholar 

  58. Oloo CM, Onyari JM, Wanyonyi WC, Wabomba JN, Muinde VM (2020) Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: equilibrium and kinetics studies. Environ Chem Ecotoxicol 2:64–72. https://doi.org/10.1016/j.enceco.2020.05.001

    Article  Google Scholar 

  59. Parlayıcı Ş, Pehlivan E (2021) Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. Int J Phytoremediation 23:26–40. https://doi.org/10.1080/15226514.2020.1788502

    Article  CAS  PubMed  Google Scholar 

  60. Foroutan R, Oujifard A, Papari F, Esmaeili H (2019) Calcined Umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co (II). 3 Biotech 9:1–11. https://doi.org/10.1007/s13205-019-1575-1

    Article  Google Scholar 

  61. Mansour RAE-G, Simeda MG, Zaatout AA (2021) Removal of brilliant green dye from synthetic wastewater under batch mode using chemically activated date pit carbon. RSC Adv 11:7851–7861. https://doi.org/10.1039/d0ra08488c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hevira L, Ighalo JO, Aziz H, Zein R (2021) Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J Ind Eng Chem 97:188–199. https://doi.org/10.1016/j.jiec.2021.01.028

    Article  CAS  Google Scholar 

  63. Ighalo JO, Adeniyi AG, Adelodun AA (2021) Recent advances on the adsorption of herbicides and pesticides from polluted waters: performance evaluation via physical attributes. J Ind Eng Chem 93:117–137. https://doi.org/10.1016/j.jiec.2020.10.011

    Article  CAS  Google Scholar 

  64. El Naeem GA, Abd-Elhamid A, Farahat OO, El-Bardan AA, Soliman HM, Nayl A (2022) Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: characterization, kinetic and isotherm studies. J Mater Res Technol 19:3241–3254. https://doi.org/10.1016/j.jmrt.2022.06.045

    Article  CAS  Google Scholar 

  65. Jawad AH, Ngoh Y, Radzun KA (2018) Utilization of watermelon (Citrullus lanatus) rinds as a natural low-cost biosorbent for adsorption of methylene blue: kinetic, equilibrium and thermodynamic studies. J Taibah Univ Sci 12:371–381. https://doi.org/10.1080/16583655.2018.1476206

    Article  Google Scholar 

  66. Ishak Z, Kumar D (2022) Adsorption of Methylene blue and reactive black 5 by activated carbon derived from tamarind seeds. Trop Aquat Soil Pollut 2:1–12. https://doi.org/10.53623/tasp.v2i1.26

    Article  Google Scholar 

  67. Staroń P, Chwastowski J, Banach M (2017) Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J Clean Prod 149:290–301. https://doi.org/10.1016/j.jclepro.2017.02.116

    Article  CAS  Google Scholar 

  68. Andrade Siqueira TC, Zanette da Silva I, Rubio AJ, Bergamasco R, Gasparotto F, de Souza A, Paccola E, Ueda Yamaguchi N (2020) Sugarcane bagasse as an efficient biosorbent for methylene blue removal: kinetics, isotherms and thermodynamics. Int J Environ Res Public Health 17:526. https://doi.org/10.3390/ijerph17020526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molaudzi NR, Ambushe AA (2022) Sugarcane bagasse and orange peels as low-cost biosorbents for the removal of lead ions from contaminated water samples. Water 14:3395. https://doi.org/10.3390/w14213395

    Article  CAS  Google Scholar 

  70. Fiaz R, Hafeez M, Mahmood R (2019) Ficcus palmata leaves as a low-cost biosorbent for methylene blue: thermodynamic and kinetic studies. Water Environ Res 91:689–699. https://doi.org/10.1002/wer.1093

    Article  CAS  PubMed  Google Scholar 

  71. Etim U, Umoren S, Eduok U (2016) Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc 20:S67–S76. https://doi.org/10.1016/j.jscs.2012.09.014

    Article  CAS  Google Scholar 

  72. Hassan W, Farooq U, Ahmad M, Athar M, Khan MA (2017) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem 10:S1512–S1522. https://doi.org/10.1016/j.arabjc.2013.05.002

    Article  CAS  Google Scholar 

  73. Singh R, Singh TS, Odiyo JO, Smith JA, Edokpayi JN (2020) Evaluation of methylene blue sorption onto low-cost biosorbents: equilibrium, kinetics, and thermodynamics. J Chem. https://doi.org/10.1155/2020/8318049

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

The paper is not subjected to any funding source.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AH, AI and LM. The first draft of the manuscript was written by AH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amina Hadadi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadadi, A., Imessaoudene, A., Bollinger, JC. et al. Dual Valorization of Potato Peel (Solanum tuberosum) as a Versatile and Sustainable Agricultural Waste in Both Bioflocculation of Eriochrome Black T and Biosorption of Methylene Blue. J Polym Environ 31, 2983–2998 (2023). https://doi.org/10.1007/s10924-023-02780-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02780-7

Keywords

Navigation