Skip to main content

Advertisement

Log in

Trend Analysis Application on Near Surface SO2 Concentration Data from 2010 to 2020 in Serbia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, the trend of the surface sulfur dioxide (SO2) concentration over Serbia was analyzed from January 2010 to December 2020. In this analysis, the measured hourly SO2 concentrations from the SEPA (Serbian Environmental Protection Agency) automatic monitoring stations and one EMEP (European Monitoring and Evaluation Programme) station were used. We focused only on the stations with more than 70% of existing data, due to questionable accuracy of trend analysis for shorter time series dataset. On the annual time scale, 87.5% of all stations showed decreasing trends, while the significant trends were detected at 50% of those stations. On the seasonal time scale, the largest number of stations showed decreasing statistically significant or insignificant trends. The highest percentage of stations (62.5%) was characterized by significantly decreasing trends during DJF season, followed by 31.25% during SON season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available in the open data repository of Serbian Agency for Environmental Protection (SEPA), http://data.sepa.gov.rs/group/vazduh .

References

  • Ahmadi, F., Tahroudi, M. N., Mirabbasi, R., Khalili, K., & Jhajharia, D. (2018). Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25, 314–321.

    Article  Google Scholar 

  • Albertson, K., Aylen, J., & Lim, K. (2002). The power of the Durbin Watson test when the errors are PAR(1). Journal of Statistical Computation and Simulation, 72, 507–516. https://doi.org/10.1080/00949650213700

    Article  Google Scholar 

  • Baxter, P. J. (2000). Gases. In: P. J. Baxter, P. H. Adams, T. -C. Aw, A. Cockcroft & J. M. Harrington (Eds.), Hunters Diseases of Occupations (pp. 123–178).

  • Berryman, D., Bobée, B., Cluis, D., & Haemmerli, J. (1988). Nonparametric tests for trend detection in water quality timeseries 1. JAWRA Journal of the American Water ResourcesAssociation, 24(3), 545–556.

    Article  CAS  Google Scholar 

  • Cannarozzo, M., Noto, L. V., & Viola, F. (2006). Spatialdistribution of rainfall trends in Sicily (1921–2000). Physicsand Chemistry of the Earth, Parts A/B/C, 31(18), 1201–1211.

    Article  Google Scholar 

  • Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6, 3–73.

    Google Scholar 

  • Croitoru, A. E., Chiotoroiu, B. C., Todorova, V. I., & Torica, V. (2013). Changes in precipitation extremes on the Black Sea Western Coast. Global and Planetary Change, 102, 10–19. https://doi.org/10.1016/j.gloplacha.2013.01.004

    Article  Google Scholar 

  • Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III Biometrika., 58(1), 1–19. https://doi.org/10.2307/2334313

    Article  Google Scholar 

  • Fagerli, H., Tsyro, S., Simpson, D., Nyíri, Á., Wind, P., Gauss, M., Benedictow, A., Klein, H., Valdebenito, A., Mu, Q., Wærsted, E. G., Gliß, J., Brenna, H., Mortier, A., & Griesfeller, J. (2021). Source-receptor tables for 2019. In Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2021 (pp. D:4–D:5). The Norwegian Meteorological Institute.

    Google Scholar 

  • Gavrilov, M., Tošić, I., Markovic, S., Unkašević, M., & Petrovic, P. (2016). Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina, Serbia. Idojaras (Budapest, 1905), 120, 183–198.

    Google Scholar 

  • Glen, S. (2022). Durbin Watson Test & Test Statistic. From StatisticsHowTo.com: Elementary Statistics for the rest of us!. https://www.statisticshowto.com/durbin-watson-test-coefficient/. Accessed 8 Nov 2021

  • Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014

    Article  Google Scholar 

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Harcum, J. B., Loftis, J. C., & Ward, R. C. (1992). Selecting trend tests for water quality series with serial correlation and missing values 1. JAWRA Journal of the American Water Resources Association, 28(3), 469–478.

    Article  CAS  Google Scholar 

  • Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of techniques for the detection and estimation of trends in water quality. Water Resources Research, 27(5), 803–813.

    Article  Google Scholar 

  • Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121. https://doi.org/10.1029/WR018i001p00107

    Article  Google Scholar 

  • Hussain, M., & Mahmud, I. (2019). pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556. https://doi.org/10.21105/joss.01556

    Article  Google Scholar 

  • IQAir. (2022). 2021 World Air Quality Report. https://www.iqair.com/serbia. Accessed 7 Aug 2022

  • Kamal, N., & Pachauri, S. (2018). Mann-kendall test - a novel approach for statistical trend analysis. International Journal of Computer Trends and Technology, 63(1), 18–21. https://doi.org/10.14445/22312803/IJCTT-V63P104

  • Kendall, M. G. (1955). Further contributions to the theory of paired comparisons. Biometrics, 11(1), 43–62.

    Article  Google Scholar 

  • Malinović-Milićević, S. B., Mihailović, D. T., Nikolić-Đorić, E. B., & Jevtić, M. R. (2015). Gaseous and particulate urban air pollution in the region of Vojvodina (Serbia). Matica Srpska Journal of Natural Sciences, 128, 87–97. https://doi.org/10.2298/ZMSPN1528087M

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259.

  • Maskurul, A., Matiur, R., Sharmin, A. S. & Yasin, A. P. (2015) Time series decomposition and seasonal adjustment, Global Journal of Science Frontier Research: F, Mathematics and Decision Sciences, Volume 15 Issue 9 Version 1.0 Year 2015, Type: Double Blind Peer Reviewed International Research Journal, Publisher: Global Journals Inc. (USA), Online ISSN: 2249-4626 & Print ISSN: 0975-5896

  • Matkovic, V., Jones, D., Myllyvirta, L., & Gierens, R. (2019). Impacts of transboundary coal air pollution from Balkan region to European public health. European Journal of Public Health, 29. https://doi.org/10.1093/eurpub/ckz185.398

  • Mavromatis, T., & Stathis, D. (2011). Response of the water balance in Greece to temperature and precipitation trends. Theoretical and Applied Climatology, 104, 13–24. https://doi.org/10.1007/s00704-010-0320-9

    Article  Google Scholar 

  • McLeod, A. I., Hipel, K. W., & Comancho, F. (1983). Trend assessment of water quality time series 1. JAWRA Journal of the American Water Resources Association, 19(4), 537–547.

    Article  CAS  Google Scholar 

  • Pandolfi, M., Alastuey, A., Pérez, N., Reche, C., Castro, I., Shatalov, V., & Querol, X. (2016). Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004–2014: a multi-exponential approach. Atmospheric Chemistry and Physics, 16, 11787–11805. https://doi.org/10.5194/acp-16-11787-2016

  • Romanic, D., Ćurić, M., Jovicic, I., & Lompar, M. (2014). Long-term trends of the ‘Koshava’ wind during the period 1949–2010. International Journal of Climatology, 35. https://doi.org/10.1002/joc.3981

  • Sansigolo, C. A., & Kayano, M. T. (2010). Trends of seasonal maximum and minimum temperatures and precipitation in Southern Brazil for the 1913 - 2006 period. Theoretical and Applied Climatology, 101(1), 209–216.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. JASA, 63, 1379–1389.

    Article  Google Scholar 

  • Serbian Environmental Protection Agency. (2021). Annual Report on the state of air quality in the Republic of Serbia in 2020. Serbian EPA. http://www.sepa.gov.rs/index.php?menu=5000&id=1304&akcija=showDocuments&tema=Vazduh&godina=2020. Accessed 21 Oct 2021

  • Silva, R., Santos, C., Moreira, M., Corte-Real, J., Silva, V., & Medeiros, I. (2015). Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards. https://doi.org/10.1007/s11069-015-1644-7

  • Simic, S., Weihs, P., Vacek, A., Kromp-Kolb, H., & Fitzka, M. (2008). Spectral UV measurements in Austria from 1994 to 2006: Investigations of short- and long-term changes. Atmospheric Chemistry and Physics, 8, 7033–7043. https://doi.org/10.5194/acp-8-7033-2008

    Article  CAS  Google Scholar 

  • Simonovski, A., Tasić, V., Apostolovski-Triji, T., Milikić, N., & Božilov, A. (2020). SO2 Concentrations in BOR, Serbia, In The Period 2011-2020, FACTA UNIVERSITATIS Series. Working and Living Environmental Protection, 17(2), 131–137. https://doi.org/10.22190/FUWLEP2002131S

    Article  Google Scholar 

  • Tabari, H., & Marofi, S. (2011). Changes of pan evaporation in the west of Iran. Water Resources Management, 25(1), 97–111.

    Article  Google Scholar 

  • Todorovic, I. (2021). Western Balkans coal plants emit 2.5 times more SO2 than entire EU. Balkan Green Energy News. https://balkangreenenergynews.com/western-balkans-coal-plants-emit-2-5-times-more-so2-than-entire-eu/. Accessed 7 Sep 2021

  • Turner, S. L., Forbes, A. B., Karahalios, A., Taljaard, M., & McKenzie, J. (2021). Evaluation of statistical methods used in the analysis of interrupted time series studies: A simulation study. BMC Medical Research Methodology, 21, 181. https://doi.org/10.1186/s12874-021-01364-0

    Article  Google Scholar 

  • World Health Organization. (2019). Health impact of ambient air pollution in Serbia. United Nations Serbia, https://serbia.un.org/en/22141-health-impact-ambient-air-pollution-serbia-call-action. Accessed 5 Mar 2019

  • Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., & Chen, Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112(1), 79–91. https://doi.org/10.1016/j.gloplacha.2013/12.001

    Article  Google Scholar 

  • Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218. https://doi.org/10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  • Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 4–1. https://doi.org/10.1029/2001WR000861

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate that this work was financed from project 3949/1 supported by the Faculty of Ecology and Environmental Protection, Union-Nikola Tesla University, Belgrade, Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Mrazovac Kurilić.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćirišan, A., Podraščanin, Z., Bujanović, L.N. et al. Trend Analysis Application on Near Surface SO2 Concentration Data from 2010 to 2020 in Serbia. Water Air Soil Pollut 234, 186 (2023). https://doi.org/10.1007/s11270-023-06111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06111-3

Keywords

Navigation