Skip to main content
Log in

The Joint Anaerobic Denitrification Performance of Klebsiella sp. and Enterobacter hormaechei Using Two Carbon Substrates With and Without the Presence of Heavy Metals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metals such as Cu and Zn frequently co-occur with nitrate in the agriculturally impacted groundwaters. The varying denitrifying efficiency of carbon substrates is often linked to the rate of release of organic matter but rarely the components of the organic matter. Also, the impact of commonly occurring heavy metals in such denitrification systems remains unstudied. To address these questions, an Enterobacter hormaechei and Klebsiella sp. duad with two carbon substrates, corn cob (CC) and wood shavings (WS), was investigated for their nitrate removal performance and heavy metal tolerance in the presence of Cu and Zn. Results show that the Enterobacter hormaechei and Klebsiella sp. duad was up to 50 times more tolerant to Cu and up to 5 times more tolerant to Zn than most recently studied bacterial strains. CC was better suited for nitrate removal than WS, indicated by a removal efficiency of 99% and 25% respectively. Parallel factor analysis (PARAFAC) of the substrate leachate indicated that denitrification resulted in a transition from a protein-like to a humic-like DOM suggesting that the protein-like components are responsible for denitrification. Furthermore, the CC protein component is more biodegradable than the WS protein, implying that the CC is substantially more efficient. Cu had a more pronounced negative impact on denitrification performance than Zn, with the threshold concentrations being > 20 mg/L and 100 mg/L for Cu and Zn respectively. Insights gained through this study can help to better evaluate and improve the nitrate removal efficiency by the biological denitrification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is available upon request to the corresponding author.

References

  • Amoako-Nimako, G. K., Yang, X., & Chen, F. (2021). Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: Controlling mechanisms, challenges, and future perspectives. Environmental Science and Pollution Research International, 28(17), 21045–21064. https://doi.org/10.1007/s11356-021-13260-7

    Article  CAS  Google Scholar 

  • Barnes, R. T., Smith, R. L., & Aiken, G. R. (2012). Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado: DENITRIFICATION AND DOM QUALITY. Journal of Geophysical Research, 117(G1). https://doi.org/10.1029/2011jg001749

  • Black, A., Hsu, P., Hamonts, K. E., Clough, T. J., & Condon, L. M. (2016). Influence of copper on expression of nirS, norB and nosZ and the transcription and activity of NIR, NOR and N2OR in the denitrifying soil bacteria Pseudomonas stutzer. Microbial Biotechnology, 9, 381–388.

    Article  CAS  Google Scholar 

  • Cai, X., Li, K., He, T., Wang, Y., Zhang, X., Xie, E., Ding, N., & Li, Z. (2019). Characteristics of heterotrophic nitrifying and aerobic denitrifying Arthrobacter nicotianae D51 strain in the presence of copper. Water, 11(3), 434. https://doi.org/10.3390/w11030434

    Article  CAS  Google Scholar 

  • Chen, J., Zheng, J., Li, Y., Hao, H.-H., & Chen, J.-M. (2015). Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification. Applied Microbiology and Biotechnology, 99(24), 10695–10702. https://doi.org/10.1007/s00253-015-6870-0

    Article  CAS  Google Scholar 

  • Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107(2), 402–418. https://doi.org/10.1021/cr050350+

    Article  CAS  Google Scholar 

  • Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography, Methods, 8, 67–78. https://doi.org/10.4319/lom.2010.8.0067

    Article  CAS  Google Scholar 

  • Cui, P., Fan, F., Yin, C., Song, A., Huang, P., Tang, Y., Zhu, P., Peng, C., Li, T., Wakelin, S. A., & Liang, Y. (2016). Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology & Biochemistry, 93, 131–141. https://doi.org/10.1016/j.soilbio.2015.11.005

    Article  CAS  Google Scholar 

  • Deng, Z., Wang, Z., Zhang, P., Xia, P., Ma, K., Zhang, D., Wang, L., Yang, Y., Wang, Y., Chen, S., & Deng, S. (2019). Effects of divalent copper on microbial community, enzymatic activity and functional genes associated with nitrification and denitrification at tetracycline stress. Enzyme and Microbial Technology, 126, 62–68. https://doi.org/10.1016/j.enzmictec.2019.03.007

    Article  CAS  Google Scholar 

  • Dobbs, R. A., Wise, R. H., & Dean, R. B. (1972). The use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater. Water Research, 6(10), 1173–1180. https://doi.org/10.1016/0043-1354(72)90017-6

    Article  CAS  Google Scholar 

  • Feng, H. G., Wang, H. L., & Jing, L. X. (2011). Mixture of walnut shell and sand used to nitrate removal in groundwater. Advanced Materials Research, 356–360, 459–466. https://doi.org/10.4028/www.scientific.net/amr.356-360.459

    Article  Google Scholar 

  • Feng, B., Fang, Z., Hou, J., Ma, X., Huang, Y., & Huang, L. (2013). Effects of heavy metal wastewater on the anoxic/aerobic-membrane bioreactor bioprocess and membrane fouling. Bioresource Technology, 142, 32–38. https://doi.org/10.1016/j.biortech.2013.05.019

    Article  CAS  Google Scholar 

  • Gui, M., Chen, Q., Ma, T., Zheng, M., & Ni, J. (2017). Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Applied Microbiology and Biotechnology, 101(4), 1717–1727. https://doi.org/10.1007/s00253-016-7984-8

    Article  CAS  Google Scholar 

  • Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B. D., & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation: DOM optical properties following degradation. Limnology and Oceanography, 61(3), 1015–1032. https://doi.org/10.1002/lno.10270

    Article  Google Scholar 

  • He, T., Li, Z., Sun, Q., Xu, Y., & Ye, Q. (2016). Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresource Technology, 200, 493–499. https://doi.org/10.1016/j.biortech.2015.10.064

    Article  CAS  Google Scholar 

  • Hu, J., Su, Q., Xiao, C., Deng, X., Liu, X., Feng, J., & Chi, R. (2022). Removal of ammonia nitrogen from residual ammonium leaching solution by heterotrophic nitrification-aerobic denitrification process: Heterotrophic nitrification-aerobic denitrification process. Environmental Technology, 1–12.https://doi.org/10.1080/09593330.2022.2064235

  • Johnson, J. E., Reyes, F. E., Polaski, J. T., & Batey, R. T. (2012). B-12 cofactors directly stabilize an mRNA regulatory switch. Nature, 492.

  • Kapoor, V., Li, X., Elk, M., Chandran, K., Impellitteri, C. A., & Santo Domingo, J. W. (2015). Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environmental Science & Technology, 49(22), 13454–13462. https://doi.org/10.1021/acs.est.5b02748

    Article  CAS  Google Scholar 

  • Komárek, M., Čadková, E., Chrastný, V., Bordas, F., & Bollinger, J.-C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International, 36(1), 138–151. https://doi.org/10.1016/j.envint.2009.10.005

    Article  CAS  Google Scholar 

  • Kristanto, G. A., Rialdi, H., & Gusniani, I. (2017). Nitrogen removal from landfill leachate via ex-situ nitrification and in-situ denitrification in laboratory scale bioreactor. Procedia Engineering, 171, 425–433. https://doi.org/10.1016/j.proeng.2017.01.353

    Article  CAS  Google Scholar 

  • Li, H., Yao, H., Zhang, D., Zuo, L., Ren, J., Ma, J., & Yang. (2018). Short-and long-term effects of manganese, zinc and copper ions on nitrogen removal in nitritation-anammox process. Chemosphere, 193, 479–488.

    Article  CAS  Google Scholar 

  • Li, D., Liang, X., Jin, Y., Wu, C., & Zhou, R. (2019). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Klebsiella sp. TN-10. Applied Biochemistry and Biotechnology, 188(2), 540–554. https://doi.org/10.1007/s12010-018-02932-9

    Article  CAS  Google Scholar 

  • Ling, Y., Yan, G., Wang, H., Dong, W., Wang, H., Chang, Y., Chang, M., & Li, C. (2021). Release mechanism, secondary pollutants and denitrification performance comparison of six kinds of agricultural wastes as solid carbon sources for nitrate removal. International Journal of Environmental Research and Public Health, 18(3), 1232. https://doi.org/10.3390/ijerph18031232

    Article  CAS  Google Scholar 

  • Liu, E., Fan, C., Zhao, M., Jiang, S., Wang, Z., Jin, Z., Bei, K., Zheng, X., Wu, S., & Zeng, Q. (2022). Effects of heavy metals on denitrification processes in water treatment: A review. Separation and Purification Technology, 299(121793), 121793. https://doi.org/10.1016/j.seppur.2022.121793

    Article  CAS  Google Scholar 

  • Lu, Z., Gan, L., Lin, J., & Chen, Z. (2019). Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II). The Science of the Total Environment, 658, 80–86. https://doi.org/10.1016/j.scitotenv.2018.12.225

    Article  CAS  Google Scholar 

  • Mahmoud, A., Hamza, R. A., & Elbeshbishy, E. (2022). Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. The Science of the Total Environment, 816(151578), 151578. https://doi.org/10.1016/j.scitotenv.2021.151578

    Article  CAS  Google Scholar 

  • Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis. Environmental Science. Processes & Impacts, 16(9), 2064–2079. https://doi.org/10.1039/c4em00062e

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques PARAFAC. Analytical Methods: Advancing Methods and Applications, 5(23), 6557. https://doi.org/10.1039/c3ay41160e

    Article  CAS  Google Scholar 

  • Nielsen, F. H. (2012). History of zinc in agriculture. Advances in Nutrition (Bethesda, Md.), 3(6), 783–789. https://doi.org/10.3945/an.112.002881

    Article  CAS  Google Scholar 

  • Ochoa-Herrera, V., León, G., Banihani, Q., Field, J. A., & Sierra-Alvarez, R. (2011). Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment, 412, 380–385.

    Article  Google Scholar 

  • Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36(4), 742–746. https://doi.org/10.1021/es0155276

    Article  CAS  Google Scholar 

  • Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., & Graeber, D. (2019). StaRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R. Water, 11(11), 2366. https://doi.org/10.3390/w11112366

    Article  CAS  Google Scholar 

  • Radniecki, T. S., & Ely, R. L. (2008). Zinc chloride inhibition of Nitrosococcus mobilis. Biotechnology and Bioengineering, 99(5), 1085–1095. https://doi.org/10.1002/bit.21672

    Article  CAS  Google Scholar 

  • Sawyer, A. H. (2015). Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophysical Research Letters, 42, 403–410.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3–4), 239–254. https://doi.org/10.1016/s0304-4203(03)00072-0

    Article  CAS  Google Scholar 

  • Sun, Z., Lv, Y., Liu, Y., & Ren, R. (2016). Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresource Technology, 220, 142–150. https://doi.org/10.1016/j.biortech.2016.07.110

    Article  CAS  Google Scholar 

  • Team, R. C. (2013). R: A language and environment for statistical computing.

  • Thakur, A. K., Vithanage, M., Das, D. B., & Kumar, M. (2020). A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environmental Technology & Innovation, 19(100917), 100917. https://doi.org/10.1016/j.eti.2020.100917

    Article  Google Scholar 

  • Wang, Y., Chen, H., Liu, Y.-X., Ren, R.-P., & Lv, Y.-K. (2015). Effect of temperature, salinity, heavy metals, ammonium concentration, pH and dissolved oxygen on ammonium removal by an aerobic nitrifier. RSC Advances, 5(97), 79988–79996. https://doi.org/10.1039/c5ra13318a

    Article  CAS  Google Scholar 

  • Wang, Z., Yuan, S., Deng, Z., Wang, Y., Deng, S., Song, Y., Sun, C., Bu, N., & Wang, X. (2020). Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes. Bioresource Technology, 314(123769), 123769. https://doi.org/10.1016/j.biortech.2020.123769

    Article  CAS  Google Scholar 

  • Warneke, S., Schipper, L. A., Matiasek, M. G., Scow, K. M., Cameron, S., Bruesewitz, D. A., & McDonald, I. R. (2011). Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Research, 45(17), 5463–5475. https://doi.org/10.1016/j.watres.2011.08.007

    Article  CAS  Google Scholar 

  • Xing, Y., Zhang, D., Cai, L., Xie, Y., Wang, L., Li, Q., & Hua, Y. (2020). An innovative double-layer microsphere used as slow-release carbon source for biological denitrification. Water, Air, and Soil Pollution, 231(3). https://doi.org/10.1007/s11270-020-04506-0

  • Yang, C., Hamel, C., & Gan, Y. (2015). Incongruous variation of denitrifying bacterial communities as soil N level rises in Canadian canola fields. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 89, 93–101. https://doi.org/10.1016/j.apsoil.2015.01.002

    Article  Google Scholar 

  • Yao, X.-F., Zhang, J.-M., Tian, L., & Guo, J.-H. (2017). The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay China. Brazilian Journal of Microbiology, 48(1), 71–78. https://doi.org/10.1016/j.bjm.2016.09.007

    Article  CAS  Google Scholar 

  • Yin, J., Xu, H., Shen, D., Wang, K., & Lin, Y. (2015). Effect of Cu (II) shock loads on shortcut biological nitrogen removal in a hybrid biofilm nitrogen removal reactor. Biodegradation, 26(3), 211–222.

    Article  CAS  Google Scholar 

  • Zhang, Z.-Z., Zhang, Q.-Q., Xu, J.-J., Deng, R., Ji, Z.-Q., Wu, Y.-H., & Jin, R.-C. (2016). Evaluation of the inhibitory effects of heavy metals on anammox activity: A batch test study. Bioresource Technology, 200, 208–216. https://doi.org/10.1016/j.biortech.2015.10.035

    Article  CAS  Google Scholar 

  • Zhang, N., Chen, H., Lyu, Y., & Wang, Y. (2019). Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1 capable of heterotrophic nitrification–aerobic denitrification. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 94(4), 1165–1175. https://doi.org/10.1002/jctb.5863

    Article  CAS  Google Scholar 

  • Zheng, X., Su, Y., Chen, Y., Wan, R., Liu, K., Li, M., & Yin, D. (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology, 48(23), 13800–13807. https://doi.org/10.1021/es504251v

    Article  CAS  Google Scholar 

  • Zou, G., Papirio, S., Ylinen, A., Di Capua, F., Lakaniemi, A. M., & Puhakka, J. A. (2014). Fluidized-bed denitrification for mine waters. Part II: Effects of Ni and Co. Biodegradation, 25(3), 417–423. https://doi.org/10.1007/s10532-013-9670-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the Natural Science Foundation of China (grants: 42177406, 41672248) and Liaoning BaiQianWan Talents Program.

Funding

This research was funded by the Natural Science Foundation of China (42177406, 41672248) and Liaoning BaiQianWan Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

George Kwame Amoako-Nimako: conceptualization, formal analysis, investigation, methodology, project administration, software, validation, visualization, writing—original draft, writing—reviewing and editing. Xinyao Yang: funding acquisition, project administration, supervision, resources, conceptualization, project administration, writing—reviewing and editing. Jingjing Fu: methodology, writing—reviewing and editing. Dan Yu: methodology, writing—reviewing and editing. Fangmin Chen: writing—reviewing and editing.

Corresponding author

Correspondence to Xinyao Yang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have agreed to authorship, read, and approved the manuscript, and given consent.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Klebsiella sp. and Enterobacter hormaechei working together displayed significantly higher Cu and Zn tolerance than most recently studied strains.

• CC was more efficient as a carbon source than WS, having more biodegradable protein-like components.

• Cu had a more adverse impact than Zn, leading to NO2 accumulation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12203 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoako-Nimako, G.K., Chen, F., Fu, J. et al. The Joint Anaerobic Denitrification Performance of Klebsiella sp. and Enterobacter hormaechei Using Two Carbon Substrates With and Without the Presence of Heavy Metals. Water Air Soil Pollut 233, 531 (2022). https://doi.org/10.1007/s11270-022-05991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05991-1

Keywords

Navigation